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We introduce the notion of a pseudo-Riemannian spectral triple which generalizes the notion of
spectral triple and allows for a treatment of pseudo-Riemannian manifolds within a noncommutative
setting. It turns out that the relevant spaces in noncommutative pseudo-Riemannian geometry are not
Hilbert spaces any more but Krein spaces, and Dirac operators are Krein-selfadjoint. We show that
the noncommutative tori can be endowed with a pseudo-Riemannian structure in this way. For the
noncommutative tori as well as for pseudo-Riemannian spin manifolds the dimension, the signature
of the metric, and the integral of a function can be recovered from the spectral data.
© 2004 Published by Elsevier B.V.

MSC: 58B34; 58B99; 46C20; 53C50

JGP SC: Noncommutative geometry; Lorentzian geometry

Keywords: Pseudo-Riemannian; Noncommutative tori; Noncommutative geometry

1. Introduction

The Gel’fand–Naimark theorem states that any unital commutativeC∗-algebra can be
realized as an algebra of continuous functions on a compact Hausdorff space. In noncom-
mutative geometry one thinks of a noncommutativeC∗-algebra as an algebra of functions on
some “virtual” space and tries to imitate geometrical constructions which work for the case
of commutative algebras. Connes functional analytic approach (see[6]) to noncommutative
geometry starts with the observation that the metric information of a compact Riemannian
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spin manifoldM is encoded in the triple (C∞(M), /D,L2(M,S)), where/D is the Dirac opera-
tor andL2(M,S) is the Hilbert space of square integrable sections of the spinor bundle. The
algebraC∞(M) is realized as a∗-algebra of bounded operators onL2(M,S). The space of
characters ofC∞(M) is canonically isomorphic to the set of points ofM and the Riemannian
distance between to pointp andq can be recovered from the equation

d(p, q) = sup|f (p) − f (q)|, f ∈ C∞(M), ‖[/D, f ]‖ ≤ 1. (1)

The noncommutative generalization of the object (C∞(M), /D,L2(M,S)) is the so called
spectral triple, which we can think of as a generalization of the theory of compact Rieman-
nian manifolds. For a further introduction to noncommutative geometry we would like to
refer the reader to[9,16,22,17]and the references therein.

Recently there have been attempts to get analogues of spectral triples which allow for a
treatment of non-compact manifolds (see[20]) and globally hyperbolic Lorentzian mani-
folds (see[18,15,14,13]). Such a treatment seems necessary if one wants to study physical
models, which are defined on spaces with Lorentzian rather than Riemannian metrics. The
idea in [10,15,14,13]is to foliate the space–time into Cauchy surfaces and to treat the
Cauchy surfaces as Riemannian manifolds. Whereas this approach seems promising for the
study of evolution equations in physics, its dependence on the foliation and the restriction
to Lorentzian signatures is disturbing from the mathematical point of view.

In this paper we suggest a notion of pseudo-Riemannian spectral triple, which allows
to treat compact pseudo-Riemannian manifolds (of arbitrary signature) within noncommu-
tative geometry. Such a triple (A,D,H) consists of an involutive algebraA of bounded
operators acting on a Krein spaceH and a Krein-selfadjoint operatorD. An important role is
played by the fundamental symmetries of the Krein space. These are operatorsJ : H→ H
with J2 = 1 such that (·, J·) = (J·, ·) is a positive definite scalar product turningH into a
Hilbert space. They can be used to obtain ordinary spectral triples from pseudo-Riemannian
spectral triples in a similar way as this is done in physics by “Wick rotation”, which is used
to pass to Riemannian signatures of the metric. For example ifM is a Lorentzian spin man-
ifold, A = C∞

0 (M) andD is the Dirac operator which acts on the Krein space of square
integrable sectionsH of the spinor bundle, the triple (A,D,H) is a pseudo-Riemannian
spectral triple. From the pseudo-Riemannian metricg on M one can obtain a Riemannian
metric by applying a so called spacelike reflectionr. This is an involutive endomorphism
r : TM → TM of vector bundles such thatg(r·, ·) is a Riemannian metric. Such spacelike
reflections give rise to a large class of fundamental symmetriesJ such that the operator
(1/2)((JD)2 + (DJ)2) is a Laplace-type operator with respect to a Riemannian metric. We
can think of this metric as a Wick rotated form of the Lorentzian metric. We use this to
show that one can define a notion of dimension for pseudo-Riemannian spectral triples. In
the commutative case and for the noncommutative pseudo-Riemannian torus we show that
there is a canonical notion of integration and one can recover the signature of the metric
from the spectral data. It should be noted that the “Wick rotation” takes place in the fibres
of TM and therefore does not require a special choice of time coordinates.

In Sections2–5we review the basic notions and results on spectral triples, Krein spaces
and Dirac operators on pseudo-Riemannian manifolds. Sections6 and 7contain the main
results of this paper.
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2. Spectral triples

Definition 2.1. A spectral triple (A,H,D) consists of a unital∗-algebraA of bounded
operators on a separable Hilbert spaceH and a selfadjoint operatorD onH, such that the
commutator [D, a] is bounded for alla ∈ A. A spectral triple is said to be even if there
exists an operatorχ = χ∗, χ2 = 1 on the Hilbert space such that

χa = aχ ∀a ∈ A, (2)

Dχ = −χD. (3)

For a compact operatora denote byµk(a) the ordered sequence of its singular values,
i.e.µk(a) are the eigenvalues of|a| such thatµ1(a) ≥ µ2(a) ≥ · · ·, with each eigenvalue
repeated according to its multiplicity. The characteristic sequence ofa is defined byσk(a) :=∑k
i=1µi(a). Letp ≥ 1 be a real number. A compact operatora is said to be inLp+ if

sup
n≥1

σn(a)

n(p−1)/p < ∞ for p > 1, (4)

sup
n>2

σn(a)

ln n
< ∞ for p = 1. (5)

The spacesLp+ are two 2-sided ideals inB(H). Note that ifa ∈ Lp+, then|a|p ∈ L1+.
Let nowl∞(N) be the von Neumann algebra of bounded sequences. If a stateω onl∞(N)

satisfies the conditions

• limn→∞ xn = x ⇒ ω(xn) = x,
• ω(x2n) = ω(xn),

we say thatω is in Γs(l∞). The setΓs(l∞) turns out to be non-empty[8]. For each positive
a ∈ L1+ and each stateω ∈ Γs(l∞) we define Trω(a) := ω(x(a)), wherex(a)n = σn(a)/ ln n
for n ≥ 2 andx(a)1 = 0. It can be shown that for eachω the mapa → Trω(a) extends to a
finite trace onL1+ and to a singular trace onB(H) (see[8,6]).

Definition 2.2. Let p ≥ 1 be a real number. A spectral triple is calledp+-summable if
(1 +D2)−1/2 is inLp+.

In case a spectral triple isp+-summable the mapa → Trω(a(1 +D2)−p/2) is well de-
fined on the algebraAD generated byA and [D,A]. It can be shown that ifAD is contained
in the domain of smoothness of the derivationδ(·) := [|D|, ·], this map is a trace (see[5]).
A differential operator on a Riemannian manifold is said to be of Dirac type if it is of first
order and the principal symbolσ of D satisfies the relation

σ(ξ)2 = g(ξ, ξ) idEp ∀ξ ∈ T ∗
pM, p ∈ M. (6)

The geometry of a compact Riemannian spin manifold can be encoded in a spectral triple
(see[6]).
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Theorem 2.3 (Connes).Let M be a compact Riemannian manifold of dimension n and E a
hermitian vector bundle over M of rank k. LetH be the Hilbert space of square integrable
sections of E and let A be C∞(M) which acts on H by multiplication. Assume that D is
a selfadjoint differential operator of Dirac type on E. Then (A,H,D) is an n+-summable
spectral triple. As a compact space M is the spectrum of the C∗-algebra, which is the norm
closure of A. The geodesic distance on M is given by

d(p, q) = sup|f (p) − f (q)|, f ∈ A, ‖[D, f ]‖ ≤ 1. (7)

Furthermore for f ∈ C∞(M) we have∫
M

f
√

|g| dx = c(n, k) Trω(f (1 + |D|2)−n/2), (8)

where c(n, k) = 2n−1πn/2k−1nΓ (n/2).

3. Differential calculus and spectral triples

Let A be a unital algebra. Denote bȳA the vector spaceA/(C1) and defineΩnA :=
A⊗ Ā⊗n. We write (a0, a1, . . . , an) for the image ofa0 ⊗ · · · ⊗ an in ΩnA. OnΩA :=
⊕∞
n=0Ω

nA one now defines an operatord of degree 1 and a product by

d(a0, . . . , an) = (1, a0, . . . , an), (9)

(a0, . . . , an)(an+1, . . . , ak) =
n∑
i=0

(−1)n−i(a0, . . . , aiai+1, . . . , ak). (10)

This determines a differential algebra structure onΩA. If A is a star algebra, one makes
ΩA a star algebra by (a0, . . . , an)∗ := (−1)n(a∗

n, . . . , a
∗
1) · a∗

0. The pair (ΩA, d) is called
the universal differential envelope ofA.

A spectral triple (A,H,D) gives rise to a∗-representation ofΩA onH by the map

π : ΩA→ B(H), π(a0, a1, . . . , an) := a0[D, a1] · · · [D, an], aj ∈ A.

Let j0 be the graded two-sided idealj0 := ⊕nj
n
0 given by

jn0 := {ω ∈ ΩnA;π(ω) = 0}. (11)

In general,j0 is not a differential ideal. That is why it is not possible to define the space
of forms to be the imageπ(ΩA). Howeverj := j0 + dj0 is a graded differential two-sided
ideal.

Definition 3.1. The graded differential algebra of Connes forms overA is defined by

ΩDA := ΩA

j
∼=
⊕
n

π(ΩnA)

π
(dj0 ∩ΩnA). (12)
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Example 3.2. The space of one-formsΩ1
DA

∼= π(Ω1A) is the space of bounded operators
of the form

ω1 =
∑
k

ak0[D, ak1], aki ∈ A. (13)

Proposition 3.3. Let (A,H,D) be as in Theorem 2.3. As graded differential algebras
ΩDA and Γ (ΛM) are isomorphic.

See[6, p. 552]or [16, Section 7.2.1]for a proof.
If the spectral triple (A,H,D) is n+-summable the map

w1 × w2 → 〈w1, w2〉 := Trω(w∗
1w2(1 + |D|2)−n/2) (14)

defines for eachω a scalar product on the space of one-forms. In the case ofProposition 3.3
this scalar product coincides up to a scalar factor with the metric-induced scalar product on
the space of one-forms.

4. Krein spaces

4.1. Fundamentals

LetV be a vector space overC. An indefinite inner product onV is a map (·, ·) : V × V →
C which satisfies

(v, λw1 + µw2) = λ(v,w1) + µ(v,w2), (v1, v2) = (v2, v1).

The indefinite inner product is said to be non-degenerate, if

(v,w) = 0 ∀v ∈ V ⇒ w = 0.

A non-degenerated indefinite inner product spaceV is called decomposable if it can be
written as the direct sum of orthogonal subspacesV+ andV− such that the inner product is
positive definite onV+ and negative definite onV−. The inner product then defines a norm
on these subspaces.V+ andV− are called intrinsically complete if they are complete in
these norms. A non-degenerate indefinite inner product space which is decomposable such
that the subspacesV+ andV− are intrinsically complete is called aKrein space. For every
decompositionV = V+ ⊕ V− the operatorJ = id ⊕ −id defines a positive definite inner
product (theJ-inner product) by〈·, ·〉J := (·, J·). Such an operatorJ is called a fundamental
symmetry. It turns out that ifV is a Krein space each fundamental symmetry makesV a
Hilbert space. Furthermore two Hilbert space norms associated to different fundamental
symmetries are equivalent. The topology induced by these norms is called the strong
topology onV. The theory of Krein spaces can be found in[4]. For the sake of completeness
we will review in the following the main properties of linear operators on Krein spaces.
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4.2. Operators on Krein spaces

If A is a linear operator on a Krein spaceV we say thatA is densely defined if the domain
of definitionD(A) of A is strongly dense inV. Let A be a densely defined operator on a
Krein spaceV. We may define the Krein adjointA+ in the following way. LetD(A+) be
the set of vectorsv, such that there is a vectorv+ with

(v,Aw) = (v+, w) ∀w ∈ D(A). (15)

We setA+v := v+. A densely defined operator is called Krein-selfadjoint ifA = A+. An
operator is called closed if its graph is closed in the strong topology, i.e. if the operator
is closed as an operator on the Hilbert space associated to one (and hence to all) of the
fundamental symmetries. If the closure of the graph of an operatorA in the strong topology
is an operator graph, thenA is called closeable, the closurēA is the operator associated with
the closure of the operator graph. It turns out that a densely defined operatorA is closeable
if and only ifA+ is densely defined. The closure ofA is then given bȳA = A++ := (A+)+.
Clearly, a Krein-selfadjoint operator is always closed. A densely defined operator is called
essentially Krein-selfadjoint if it is closable and its closure is Krein-selfadjoint. Note that
for any fundamental symmetry we have the equalityA+ = JA∗J, if the star denotes the
adjoint in the Hilbert space defined by theJ-inner product. Therefore, given a fundamental
symmetryJ and a Krein-selfadjoint operatorA, the operatorsJA andAJ are selfadjoint
as operators in the Hilbert space induced by theJ-inner product. The symmetric operators
Re((1/2)(A+ A∗)) and Re((i/2)(A− A∗)) are called real and imaginary parts ofA. The
sum of the squares of these operators is formally given by (A)J := (1/2)(A∗A+ AA∗). It
is natural to define theJ-modulus ofA as its square root. For a special class of fundamental
symmetries this can be done straightforwardly. We have the following proposition.

Proposition 4.1. Let A be a Krein-selfadjoint operator on a Krein space V. Let J be a
fundamental symmetry, such that dom(A) ∩ Jdom(A) is dense in V. Let 〈·, ·〉 be the scalar
product associated with J. Then the quadratic form

q(φ1, φ2) := 1
2(〈Aφ1, Aφ2〉 + 〈A∗φ1, A

∗φ2〉) (16)

on dom(A) ∩ Jdom(A) is closed and the unique selfadjoint operator (A)J associated with

this form commutes with J. Therefore, it is Krein-selfadjoint. Moreover dom((A)1/2J ) =
dom(A) ∩ Jdom(A).

Proof. Since bothA andA∗ are closed, the quadratic form is closed as well. We re-
peat the construction of the selfadjoint operator associated with this form (see[19, Theo-
rem VIII.15]). DenoteW = dom(A) ∩ Jdom(A). The pairing of the scalar product yields
an inclusion of spacesW ⊂ V ⊂ W∗, whereW∗ is the dual space ofW. We define the
operatorB̂ : W → W∗ by [B̂φ](ψ) := q(ψ, φ) + 〈ψ, φ〉. B̂ is in isometric isomorphism.
With dom(B) := {ψ ∈ W ; B̂ψ ∈ V } the operatorB := B̂|dom(B) : dom(B) → V is selfad-
joint and (A)J = B − 1. By constructionJ restricts onW to a norm preserving isomorphism
and its adjoint map̂J

∗
: W∗ → W∗ is the continuous extension ofJ. From the definition of

B̂ we get immediatelŷBJ = Ĵ∗B̂. Therefore, dom((A)J) = dom(B) is invariant under the
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action ofJ and furthermore (A)J andJ commute. The form domain of (A)J is dom((A)1/2J ),

and we conclude that dom((A)1/2J ) = W .

We therefore make the following definition.

Definition 4.2. Let A be a Krein-selfadjoint operator on a Krein spaceV and suppose thatJ
is a fundamental symmetry such that dom(A) ∩ Jdom(A) is dense inV. Then theJ-modulus
[A]J of A is the Krein-selfadjoint operator (A)1/2J constructed above.

4.3. Ideals of operators on Krein spaces

Since allJ-inner products define equivalent norms, properties of operators like bound-
edness and compactness, which depend only on the topological structure of the Hilbert
space, carry over to Krein spaces without change. The algebra of bounded operators in a
Krein spaceV will be denoted byB(V ). Each fundamental symmetryJ defines a norm on
B(V ) by ‖a‖J := supv(‖av‖J/‖v‖J), where‖v‖2

J = (v, Jv). The norms onB(V ) induced
by different fundamental symmetries are equivalent. We choose a fundamental symmetry
J and viewV as a Hilbert space with theJ-inner product. SinceLp+ are ideals inB(V ),
we haveB−1Lp+B = Lp+ for any invertible operator inB(V ). Therefore, the definition of
Lp+ does not depend on the choice of scalar product and consequently it is independent
of the chosen fundamental symmetry. The same argument applies to the Dixmier traces.
Let ω ∈ Γs(l∞) be fixed. Then for anya ∈ L1+ and any invertible operator inB(V ) we
have Trω(B−1aB) = Trω(a). Therefore, the Dixmier trace does not depend on the choice of
fundamental symmetry. We conclude that bothLp+ and Trω make sense on Krein spaces
without referring to a particular fundamental symmetry.

5. Clifford algebras and the Dirac operator

5.1. Clifford algebras and the spinor modules

Let qn,k be the quadratic formq(x) = −x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n on R
n. The

Clifford algebra Cln,k is the algebra generated by the symbolsc(x) with x ∈ R
n and the

relations

x → c(x) is linear, (17)

c(x)2 = qn,k(x)1. (18)

Let Clcn,k be the complexification of Cln,k endowed with the antilinear involution+ defined
by c(v)+ = (−1)kc(v). For n even the algebra Clcn,k is isomorphic to the matrix algebra
MatC(2n/2), for n odd it is isomorphic to MatC(2[n/2]) ⊕ MatC(2[n/2]). Let σ1, σ2, σ3 be
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the Pauli matrices and define

τ(j) =
{

i for j ≤ k,

1 for j > k.

For n even we define the isomorphismΦn,k : Clcn,k → MatC(2
n
2 ) by

Φn,k(c(x2j+1)) := τ(2j + 1) · σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
j-times

⊗σ1 ⊗ 1 ⊗ · · · ⊗ 1,

Φn,k(c(x2j)) := τ(2j) · σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
(j−1)-times

⊗σ2 ⊗ 1 ⊗ · · · ⊗ 1.

Whereas for oddn = 2m+ 1 we defineΦn,k : Clcn,k → MatC(2[n/2]) ⊕ MatC(2[n/2]) by

Φn,k(c(xj)) :=
{
Φ2m,k(c(xj)) ⊕Φ2m,k(c(xj)) for 1 ≤ j ≤ 2m,

τ(j){(σ3 ⊗ · · · ⊗ σ3) ⊕ (−σ3 ⊗ · · · ⊗ σ3)} for j = 2m+ 1.

For evenn the isomorphismΦn,k gives an irreducible representation of Clc
n,k on�n,k :=

C
2n/2, whereas forn odd we obtain an irreducible representation on�n,k := C

2[n/2]
by

restrictingΦn,k to the first component. The restrictions of these representations to the group
Spin(n, k) ⊂ Cln,k are the well known spinor representations on�n,k. In the following we
write γ(v) for the image ofc(v) under this representation. In casen is even we define the
grading operatorχ := i(n(n−1)/2)+kγ(x1) · · · γ(xn). We have

χ2 = 1, (19)

χγ(v) + γ(v)χ = 0. (20)

There is no analogue to this operator in the odd-dimensional case. There is a natural non-
degenerate indefinite inner product on the modules�n,k given by

(u, v) = i(k(k+1)/2)〈γ(x1) · · · γ(xk)u, v〉
C2[n/2] . (21)

This indefinite inner product is invariant under the action of the group Spin(n, k)+ which is
the double covering group of SO(n, k)+. Furthermore the Krein-adjointΦn,k(x)+ ofΦn,k(x)
is given byΦn,k(x+). If n is even, one gets for the grading operatorχ+ = (−1)kχ. Up to a
factor this inner product is uniquely determined by these properties.

5.2. Fundamental symmetries of the spinor modules

Let now n andk be fixed and denote byg the unique bilinear form onRn such that
g(v, v) = qn,k(v). A spacelike reflection is linear mapr : R

n → R
n with r2 = 1,g(ru, rv) =

g(u, v) for all u, v ∈ R
n such thatg(·, r·) is a positive definite inner product. Each such

reflection determines a splittingRn = R
k ⊕ R

n−k into g-orthogonal eigenspaces ofr for
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eigenvalue−1 and+1. Clearly,g is negative definite on the first and positive definite on
the second summand. Conversely for each splitting ofR

n into a direct sum ofg-orthogonal
subspaces such thatg is negative or positive definite on the summands determines a spacelike
reflection.

To each such spacelike reflection we can associate a fundamental symmetry of the Krein
space�n,k. We choose an oriented orthonormal basis (e1, . . . , ek) in the eigenspace for
eigenvalue−1. Then the operatorJr := i(k(k+1)/2)γ(e1) · · · γ(ek) is a fundamental symmetry
of�n,k and we haveJrγ(v)Jr = (−1)kγ(rv). In general, not all the fundamental symmetries
are of this form. The following criterion will turn out to be useful.

Proposition 5.1. Let J be a fundamental symmetry of the Krein space �n,k such that for
each v ∈ R

n ⊂ Clcn,k the matrix

(Jγ(v))2 + (γ(v)J)2

is proportional to the identity. If n is even assume furthermore that J commutes or an-
ticommutes with the grading operator χ. Then there is a spacelike reflection r such that
J = Jr.

Proof. By assumptionh(u, v) = (−1)k{Jγ(u)J, γ(v)} = {γ(u)∗, γ(v)} is a real valued bi-
linear form onR

n, where{·, ·} denotes the anti-commutator and the∗ is the adjoint in
theJ-scalar product. Clearly,h(v, v) ≥ 0 for all v ∈ R

n. Therefore, there exists a matrix
a ∈ End(Rn) such that

{γ(u)∗, γ(v)} = {γ(au), γ(v)} (22)

for all u, v ∈ R
n. As a consequenceδ(u) = γ(u)∗ − γ(au) anti-commutes with all el-

ementsγ(v). In the odd-dimensional case there is no such matrix other than 0 and
in the even-dimensional caseδ must be a multiple of the grading operator. Therefore,
γ∗(v) = (−1)kJγ(v)J can be written as a sumγ(av) + λ(v)χ, whereλ is a linear form on
R
n. Fromγ(v)∗∗ = γ(v) andJχJ = ±χwe geta2 = 1. For eigenvectorsav = ±v of a one

gets from the equation (γ(v)∗)2 = γ(v)2 thatλ(v)2 = 0. Hence,λ = 0. We showed that for
n even or odd we always haveJγ(v)J = (−1)kγ(av), for a reflectiona. The bilinear formh
ish(u, v) = (u, av) and since it is positive semi-definite anda has trivial kernel, it is positive
definite. Therefore,a is a spacelike reflection and consequentlyJaγ(v)Ja = (−1)kγ(av).
It remains to show thatJa = J. From the above relation one getsJJaγ(v)JaJ = γ(v), and
therefore,JJa commutes with allγ(v) and has to be a multiple of the identity. Hence,
J = zJa for some complex numberz. FromJ2 = J2

a = 1, J+a = Ja andJ+ = J we get
z = ±1. Since the fundamental symmetries both give rise to positive definite scalar prod-
ucts on�n,k, we conclude thatz = 1 andJ = Ja.

5.3. Pseudo-Riemannian geometry and the Dirac operator

Let M be a smoothn-dimensional manifold. A pseudo-Riemannian metricg on M is a
smooth section in the bundleT ∗M ⊗ T ∗M, such that for allx ∈ M the bilinear formgx
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on T ∗
x M × T ∗

x M is non-degenerate. Ifgx(v, v) = qn,k(v) for a special choice of basis we
say thatgx has signature (n, k). If gx has signature (n, k) for all x ∈ M the metric is called
pseudo-Riemannian. If the signature is (n, 0) then the metric is called Riemannian, in case
the signature is (n, 1) the metric is called Lorentzian. A vector fieldξ is called timelike
(spacelike, lightlike) ifg(ξ, ξ) < 0, (>0, =0). The metric can be used to identifyT ∗M and
TM and therefore,g can be regarded as a section inTM ⊗ TM inducing a scalar product on
T ∗
x M. See[1] or [2] for elementary properties of pseudo-Riemannian manifolds.

If (M, g) is a pseudo-Riemannian metric of signature (n, k), then the tangent-bundleTM
can be split into an orthogonal direct sumTM = Fk1 ⊕ Fn−k2 , whereg is negative definite on
Fk1 and positive definite onFn−k2 . For such a splitting we can define a mapr : TM → TM by
r(x, k1 ⊕ k2) := (x,−k1 ⊕ k2). Then the metricgr defined bygr(a, b) := g(a, rb) is positive
definite. Conversely suppose there is an endomorphism of vector bundlesr : TM → TM

with g(r·, r·) = g, r2 = id and such thatgr := g(·, r·) is positive definite. Then there is a
splitting such thatr(x, k1 ⊕ k2) = (x,−k1 ⊕ k2). We call such maps spacelike reflections.
Obviously,r : TM → TM is a spacelike reflection, if the restrictions ofr to the fibresTxM
are spacelike reflections in the sense of the last section. In the following we callgr the
Riemannian metric associated withr.

In case the bundleTM, (Fk1 , F
n−k
2 ) is orientable the manifold is called orientable (time-

orientable, space-orientable). Assume we are given an orientable, time-orientable pseudo-
Riemannian manifold (M, g) of signature (n, k). Then the bundle of oriented orthonormal
frames is an SO(n, k)+-principal bundle.

We saw that the metric information of a Riemannian manifold can be encoded in a
spectral triple, whereD was any Dirac type operator on some hermitian vector bundleE. In
the case of pseudo-Riemannian manifolds there arises a major problem. Namely that Dirac
type operators are not selfadjoint any more. We will see however that there exists a Krein
space structure on the space of sections ofE such that there are Krein-selfadjoint Dirac
type operators. Assume now thatM is an orientable time-orientable pseudo-Riemannian
manifold. LetE be a vector bundle overM and assume thatD is of Dirac type. This means
thatD is a first order differential operator and the principal symbolσ of D satisfies the relation

σ(ξ)2 = g(ξ, ξ) idEp ∀ξ ∈ T ∗
pM, p ∈ M. (23)

Therefore,γ := σ satisfies the Clifford relations, which makesE a module for the Clifford
algebra bundle. Letr : TM → TM be a spacelike reflection and identifyTM withT ∗M using
the metric. LetT ∗M = Fk1 ⊕ Fn−k2 be the splitting such thatr(x, k1 ⊕ k2) = (x,−k1 ⊕ k2).
Then there is a hermitian structure〈·, ·〉 on E such thatσx(ξ) is anti-symmetric ifξ ∈ Fk1
and symmetric ifξ ∈ Fn−k2 . Let e1, . . . , ek be a local oriented orthonormal frame forFk1
and defineJ := i(k(k+1))/2γ(e1) · · · γ(ek). J is independent of the choice of frames and
the indefinite inner product (·, ·)x := 〈·, J(x)·〉x on Ex is non-degenerate. It makesE an
non-degenerate indefinite inner product bundle. Moreover, ikσx is symmetric with respect
to this indefinite inner product. The space of square integrable sections ofE is a Krein
space endowed with the indefinite inner product structure

(f, g) :=
∫
M

(fx, gx)x
√

|g| dx. (24)
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To each spacelike reflectionr′ we can associate a fundamental symmetryJr′ of this Krein
space byJr′ := i(k(k+1)/2)γ(e1) · · · γ(ek), wheree1, . . . , ek is a local oriented orthonormal
frame for Fk1 . We conclude that for a time-orientable orientable pseudo-Riemannian
manifold there exists a Dirac type operatorD on some non-degenerate indefinite inner
product vector bundleE such that ikD is symmetric with respect to this inner product. The
following theorem was proved for Dirac operators on spin manifolds in[2]. For the sake
of completeness and since the original proof is in german, we give a proof here.

Theorem 5.2 (Baum[2]). Let E be a non-degenerate indefinite inner product vector bundle
over an orientable time-orientable pseudo-Riemannian manifold Mn,k. Let D : Γ0(E) →
Γ0(E) be a symmetric differential operator such that ikD is of Dirac type. If there exists
a spacelike reflection r such that the Riemannian metric associated with this reflection is
complete, then D is essentially Krein-selfadjoint. In particular, if M is compact then D is
always essentially Krein-selfadjoint.

Proof. Let J be the fundamental symmetry associated with the splitting and letL2(E) be
the Hilbert space of sections which are square integrable with respect to the positive definite
inner product induced byJ. We denote this scalar product in the following by〈·, ·〉. It is
clearly sufficient to show thatP = JD is essentially selfadjoint inL2(E). Note thatP is a
first order differential operator which is symmetric inL2(E). Therefore, it is closeable. The
proof consists of two steps. Let dom0(P∗) be the intersection of dom(P∗) with the space
of compactly supported square integrable section. We first show that dom0(P∗) ⊂ dom(P̄).
In the second step we show that dom0(P∗) is dense in the Hilbert space dom(P∗) endowed
with the scalar product〈x, y〉P∗ := 〈x, y〉 + 〈P∗x, P∗y〉. The combination of these results
shows that dom(̄P) is dense in the Hilbert space dom(P∗), and therefore,P is essentially
selfadjoint.

First step. Note that sinceP is symmetric, the operatorP∗ is a closed extension of
P, and furthermore the adjoint operatorP ′ : D′(E) → D′(E) is the continuous extension
of P andP∗ to the space of distributions. Assume thatf is in dom0(P∗). Then bothf and
g = P∗f have compact support. Clearly,f is a weak solution to the equationPf = g, hence,
it is also a strong solution (see e.g.[21, Prop. 7.4]), i.e. there is a sequencefn converging
to f in theL2-sense such thatPfn converges tog also in theL2-sense. Therefore,f is in
dom(P̄).

Second step. Assume thatf ∈ dom(P∗). We will construct a sequencefn in dom0(P∗)
such thatfn → f andP∗fn → P∗f in theL2-sense. Fix anx0 ∈ M and let dist(x) be a
regularized distance function fromx0 in the complete Riemannian metric associated with
the splitting. Choose a functionχ ∈ C∞

0 (R) with 0 ≤ χ ≤ 1, χ(t) = 0 for t ≥ 2, χ(t) = 1
for t ≤ 1, and|χ′| ≤ 2. We setχn(x) := χ((1/n)dist(x)). By completeness of the man-
ifold, all χn are compactly supported. We define the sequencefn := χnf and clearly,
fn ∈ dom0(P∗). Denoting byσ the principal symbol ofD, we haveP ′fn = −iJσ(dχn)f +
χnP

′f . Clearly, χnP ′f → P ′f in the L2-sense. For the first summand we have the
estimate

‖Jσ(dχn)f‖2 ≤
∫
B2n−Bn

4

n2‖f‖2, (25)
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whereBr denotes the metric ball with radiusr centred atx0. Since the right hand side
vanishes in the limitn → ∞, we conclude thatfn → f andP ′fn → P ′f in theL2-sense.
Therefore, dom0(P∗) is dense in the Hilbert space dom(P∗).

Example 5.3. A spin structure on a time-oriented oriented pseudo-Riemannian manifold
Mn,k is an Spin(n, k)+-principal bundleP overMn,k together with a smooth coveringη
from P onto the bundleQ of oriented orthonormal frames, such that the following diagram
is commutative.

P × Spin(n, k)+ −→ P −→ Mn,k

|↓ η×λ |↓ η ‖‖
Q× SO(n, k)+ −→ Q −→ Mn,k

(26)

Hereλ denotes the covering map Spin(n, k)+ → SO(n, k)+. The spinor bundleS associated
with a Spin structure is the associated bundleP ×π �n,k, whereπ denotes the representation
of Spin(n, k)+ on�n,k. Let ∇ : Γ (S) → Γ (S) ⊗Λ1 be the Levi–Civita connection on the
spinor bundle. The Dirac operator/D is defined by−iγ ◦ ∇, whereγ denotes the action of
covector fields on sections of the spinor bundle by Clifford multiplication./D is clearly of
Dirac type and it was shown in[2] (see also[3]) that the space of square integrable sections
of S is a Krein space such that ik/D is symmetric.

6. Pseudo-Riemannian spectral triples

Definition 6.1. A pseudo-Riemannian spectral triple is a tuple (A,D,H), whereA is a
pre-C∗-algebra of bounded operators on a Krein spaceH such thata∗ = a+, andD is a
Krein-selfadjoint operator onH, such that the commutators [D, a] are bounded for alla ∈ A.
A pseudo-Riemannian spectral triple is called even if there is a distinguished operatorχ,
anticommuting withD and commuting withA and withχ2 = 1 andχ+ = ±χ. If such an
operator does not exist we say the spectral triple is odd and set by definitionχ = 1. We call
χ the grading operator.

Here a pre-C∗-algebra is defined to be a normed∗-algebra whose closure is aC∗-algebra.
We will see later that it is natural to assume in addition the existence of a fundamental
symmetryJ which commutes with all elements inA. This endowsH with the structure of
a Hilbert space andA becomes a∗-subalgebra ofB(H). However, at the moment such an
assumption is not necessary and we will therefore not assume this explicitly.

For a pseudo-Riemannian spectral triple we can repeat the construction of differential
forms almost unchanged. Denote again the universal differential envelope ofA by (ΩA, d).
Clearly, the map

π : ΩA→ B(H), π(a0, a1, . . . , an) := a0[D, a1] · · · [D, an], aj ∈ A

is a representation ofΩA onH such thatπ(a∗) = π(a)+ for all a ∈ ΩA, where+ denotes
the Krein adjoint. We define the graded two sided idealj0 := ⊕nj

n
0 by

jn0 := {ω ∈ ΩnA;π(ω) = 0} (27)
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and as in the case of spectral triplesj = j0 + dj0 is a graded two-sided differential ideal.
We defineΩDA := ΩA/j. Clearly,ΩnDA � π(ΩnA)/π(dj0 ∩ΩnA).

Example 6.2. Suppose thatMn,k is a compact time-orientable orientable pseudo-
Riemannian spin manifold with spinor bundleE. Let H be the Krein space of square
integrable sections ofE and letD = ik/D, where/D is the Dirac operator. Then the triple
(C∞(M),D,H) is a pseudo-Riemannian spectral triple, and in the same way as this is
done for the Riemannian case one shows that as a graded differential algebraΩDC

∞(M)
is canonically isomorphic to the algebra of differential forms onM. We call this triple the
canonical triple associated withM.

For Riemannian spin manifolds the differential structure is encoded in the Dirac oper-
ator. For example the space of smooth sections of the spinor bundle coincides with the
space

⋂
n dom(Dn). This is essentially due to the ellipticity of the Dirac operator. In

the pseudo-Riemannian case the Dirac operator is not elliptic any more and sections in⋂
n dom(Dn) may be singular in the lightlike directions. We will circumvent this problem

by introducing the notion of a smooth pseudo-Riemannian spectral triple. Let (A,D,H)
be a pseudo-Riemannian spectral triple and suppose there is a fundamental symmetry, such
that dom(D) ∩ Jdom(D) is dense inH. Then the operator�J := ([D]2J + 1)1/2 is a self-
adjoint operator on the Hilbert spaceH with scalar product (·, J·). LetHsJ be the closure of⋂
n dom(�nJ) in the norm‖ψ‖s := ‖�sJψ‖. We have fors > 0 the equalityHsJ = dom(�sJ),

and the indefinite inner product onH can be used to identifyHsJ with the topological dual of
H−s
J . We defineH∞

J := ⋂sHsJ andH−∞
J := ⋃sHsJ. A mapa : H−∞ → H−∞ is said to be

in oprJ if it continuously mapsHs toHs−r. Clearly,�J ∈ op1
J andJ ∈ op0

J. We introduce an
equivalence relation on the set of fundamental symmetriesJ such that dom(D) ∩ Jdom(D)
is dense inH in the following way. We say thatJ1 ∼ J2 if HsJ1

= HsJ2
as topological vector

spaces. If we are dealing with a distinguished equivalence class, we will leave away the
indexJ and write e.g. opr for oprJ andHs for HsJ, since these objects clearly depend only
on the equivalence class ofJ. The spaces opr have been introduced in[7] in the context of
spectral triples.

Definition 6.3. A smooth pseudo-Riemannian spectral triple is defined to be a pseudo-
Riemannian spectral triple (A,D,H) together with a distinguished non-empty equivalence
class of fundamental symmetries [J], such thatD ∈ op1. We say a fundamental symmetry
is smooth ifJ ∈ [J].

Example 6.4. Suppose thatMn,k is a compact orientable time-orientable pseudo-
Riemannian spin manifold and let (A,D,H) be its canonical pseudo-Riemannian spectral
triple. Let E be the spinor bundle. For each spacelike reflectionr we constructed in the
previous section a fundamental symmetryJr of the Krein spaceH. The fundamental sym-
metries of the formJr belong to one and the same equivalence class and therefore define a
smooth pseudo-Riemannian spectral triple. This can most easily be seen using the calculus
of operators. Note that�J is an elliptic classical operator of order 1. Therefore,HsJ coin-
cides with the Sobolev spaceHs(M,E) of sections ofE andH∞ coincides with the space
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of smooth sectionsΓ (E). In the following we will think of the canonical triple associated
with M as a smooth pseudo-Riemannian spectral triple with the above smooth structure.

Suppose that (A,D,H) is a smooth pseudo-Riemannian spectral triple. LetJ1 andJ2 be
smooth fundamental symmetries. Then�−1

J1
is in op−1 and therefore,�J2�

−1
J1

is bounded.

As a consequence�−1
J1

is inLp+ if and only if�−1
J1

is inLp+.

Definition 6.5. We say a smooth pseudo-Riemannian spectral triple (A,D,H) is p+-
summable if for one (and hence for all) smooth fundamental symmetriesJ the operator
�−1
J is inLp+.

For the canonical triple associated with a pseudo-Riemannian spin manifold we have a
distinguished set of fundamental symmetries, namely those which are of the formJ = Jr
for some spacelike reflectionr. We may ask now if there is an analogue of this set in the
general case.

Definition 6.6. Let (A,H,D) be a smooth pseudo-Riemannian spectral triple. We say a
fundamental symmetryJ is admissible if

1. J is smooth.
2. JχJ = χ+.
3. J commutes with all elements ofA.
4. Jπ(ΩpA)J = π(ΩpA).
5. Jπ(dj0 ∩ΩpA)J = π(dj0 ∩ΩpA) if p ≥ 2.

If J is admissible and∗ denotes the adjoint in theJ-inner product, then the above
conditions imply thata∗ = a+ for all a ∈ A, χ∗ = χ and that∗ leaves the spacesΩpDA
invariant. The following theorem shows that in the case of a canonical triple associated with
a spin manifold the set of admissible fundamental symmetries is canonically isomorphic to
the set of spacelike reflections.

Theorem 6.7. Suppose that Mn,k is an orientable time-orientable compact pseudo-
Riemannian spin manifold and let (A,D,H) be its canonical smooth triple with grading
operator χ. Then the set of admissible fundamental symmetries coincides with the set

{Jr; r is a spacelike reflection}.

Proof. We first show thatJr is admissible. Clearly,Jr commutes with all elements ofA
andJχJ = χ+. MoreoverJr is smooth by construction (seeExample 6.4). We need to show
that the setsπ(ΩpA) andπ(dj0 ∩ΩpA) are invariant under conjugation byJr. We denote
by γ the principal symbol ofD. Since [D, f ] = −(i)k+1γ(df ), the spaceπ(ΩpA) is the
set of operators of the form

∑
j f

jγ(vj1) · · · γ(vjp), wheref j ∈ C∞(M) andvj1, . . . , v
j
p ∈

Γ (T ∗M). SinceJrγ(v)Jr = (−1)kγ(rv), this space is invariant under conjugation byJr.
The proof of Proposition 7.2.2 in[16] shows thatπ(dj0 ∩ΩpA) coincides with the set of
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operators of the form
∑
j f

jγ(vj1) · · · γ(vjp−2), wheref j ∈ A, vj1, . . . , v
j
k ∈ T ∗M. This set

is also invariant under conjugation byJr and we conclude thatJr is admissible. Suppose
now we have another admissible fundamental symmetryJ in [Jr]. SinceJ ∈ op0, it acts
continuously onΓ (E) and sinceJ commutes withA, it leaves the fibres invariant. It follows
thatJ is a smooth endomorphism of the spinor bundle. For a pointx ∈ M we denote by
J(x) the restriction ofJ to the fibre atx. SinceJ is admissible,J · Jmust leave the space of
one-forms invariant. This implies that for allv ∈ T ∗

x M the matrixJ(x)γ(v)J(x) is again of
the formγ(u) for someu ∈ T ∗

x M. By Proposition 5.1there exists a spacelike reflection on
the fibre atx inducingJ(x). Therefore, there is spacelike reflectionr such thatJ = Jr.

Theorem 6.8. Suppose that Mn,k is a compact orientable time-orientable pseudo-
Riemannian spin manifold and let (A,D,H) be the canonical smooth pseudo-Riemannian
spectral triple associated with M. Then (A,D,H) is n+-summable and for each f ∈
C∞(M) and each admissible fundamental symmetry J we have∫

M

f = c(n) Trω(f�−n
J ), (28)

where integration is taken with respect to the pseudo-Riemannian volume form
√|g| and

c(n) = 2n−[n/2]−1πn/2nΓ (n/2). Moreover with the same f and J

Trω(fD2�−n−2
J ) = (−1)k

n− 2k

n
Trω(f�−n

J ). (29)

Proof. Letgr be the Riemannian metric associated with a spacelike reflection. By construc-
tion the metric volume form ofgr coincides with the metric volume form of the pseudo-
Riemannian metric. Now the principal symbolσ1 of �Jr is given byσ1(k) = √

gr(k, k)
for covectorsk ∈ T ∗M. Connes’ trace formula gives Eq.(28). What is left is to show that
Eq. (29) holds. The operatorD2�−n−2

J is a classical pseudodifferential operator of order

−n and its principal symbolσ2 is given byσ2(k) = (−1)kg(k, k)gr(k, k)−n/2−1. Therefore,
the principal symbol offD2�−n−2

J is fσ2. In order to calculate the relevant Dixmier trace
we have to integrate this symbol over the cosphere bundle in some Riemannian metric. The
result will be independent of the chosen Riemannian metric. In caseJ = Jr we usegr to
integrate. On the cosphere bundleσ2 restricts to (−1)kg(k, k). Therefore,

Trω(fD2�−n−2
J ) = 1

c(n)
(−1)k Vol(Sn−1)−1

∫
S∗M

f · g. (30)

For local integration we can choose an oriented orthonormal framek1, . . . , kn such that
g(ki, ki) = −1 for i = 1, . . . , k andg(ki, ki) = 1 for i = k + 1, . . . , n. This shows that∫

S∗M
f · g = (−1)k

(∫
M

f

)
·
∫
Sn−1

(−ξ2
1 − · · · − ξ2

k + ξ2
k+1 + · · · + ξn)

= (−1)k Vol(Sn−1)
n− 2k

n

∫
M

f, (31)

which concludes the proof.
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Eq.(29)shows that one can indeed recover the signature from the spectral data and that
the notion of integration is independent of the chosen admissible fundamental symmetry.

The conditions for a fundamental symmetry to be admissible are in a sense minimal
and it is not clear at this point that one does not need further conditions in order to get a
sensible noncommutative geometry. For example one may require in addition that the set
A ∪ [D,A] is contained in the domain of smoothness of the derivationδJ(·) = [�J, ·]. This
is clearly true for admissible fundamental symmetries in the case of a canonical spectral
triple associated with a manifold. In the general case however we can not expect this to
hold. We think it is also worth noting that for the classical situation there exist a number of
equivalent definitions of admissibility. For example one has

Proposition 6.9. Let (A,D,H) be as in Theorem 6.8. Assume that J is a smooth funda-
mental symmetry that commutes with all elements of A and JχJ = χ+. Then A ∪ [D,A]
is contained in the domain of the derivation δJ if and only if J is admissible.

Proof. By assumptionJ is a smooth endomorphism of the spinor bundle. LetJ(x) be the
restriction to the fibre atx. Denote byσ the principal symbol ofD. The principal symbolA
of the second order pseudodifferential operator�2

J is given byAx(v) = 1
2(Jσx(v)Jσx(v) +

σx(v)Jσx(v)J) for v ∈ T ∗
x M. The principal symbol of�J isA1/2. Assume now that [�J, a]

is bounded for alla in A ∪ [D,A]. Then the principal symbol of the first order operator
[�J, a] must vanish. This implies thatA1/2

x (v) commutes with allσx(u); u ∈ T ∗
XM. Since

the Clifford action is irreducible,Ax(v) is a multiple of the identity and byProposition 5.1
we haveJ = Jr for some spacelike reflectionr.

7. The noncommutative tori

Definition 7.1. Letθ be a pre-symplectic form onRn. We denote byAθ the unitalC∗-algebra
generated by symbolsu(y), y ∈ Z

n and relations

u(y)∗ = u(y)−1, (32)

u(y1)u(y2) = eiπθ(y1,y2)u(y1 + y2). (33)

Let S(Zn) be the Schwarz space overZ
n, i.e. the space of functions onZn with

sup
y∈Zn

(1 + |y|2)p|a(y)|2 < ∞ ∀p ∈ N. (34)

The rotation algebraAθ is defined by

Aθ :=

a =

∑
y∈Zn

a(y)u(y); a ∈ S(Zn)


 . (35)
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It is well known that the linear functionalτ : Aθ → C defined by

τ

(∑
r

a(y)u(y)

)
:= a(0) (36)

is a faithful tracial state overAθ. In particular we haveτ(a∗a) =∑y∈Zn |a(y)|2. Note that
Aθ is generated by the elementsuk := u(ek), whereek are the basis elements inZn. They
satisfy the relations

u∗
k = u−1

k , (37)

ukui = e2πiθikuiuk. (38)

Definition 7.2. The basic derivationsδ1, . . . , δn onAθ are defined by

δj


∑
y∈Zn

a(y)u(y)


 := 2πi

∑
y∈Zn

yja(y)u(y). (39)

One checks easily that these are indeed derivations.

LetHτ be the GNS-Hilbert space of the stateτ. Sinceτ is faithful,Hτ coincides with
the closure ofAθ in the norm‖a‖2

τ = τ(a∗a). The basic derivations extend to closed skew-
adjoint operators onHτ . Denote byRn,k the vector spaceRn endowed with the indefinite
metric qn,k and let Clcn,k be the corresponding Clifford algebra. Let�n,k be the natural
Clifford module for Clcn,k. Denote byγ(v) the representation ofRn ⊂ Clcn,k on�n,k. We
choose a basis{ei} in R

n such that theγi := γ(ei) satisfyγ2
i = −1 for i = 1, . . . , k and

γ2
i = +1 for i = k + 1, . . . , n. We have the following proposition.

Proposition 7.3. LetH = Hτ ⊗�n,k and let D be the closure of the operator

D0 := ik−1

(
n∑
i=1

γiδi

)
(40)

on H with domain dom(D0) = Aθ ⊗�n,k. Then H is a Krein space with the indefinite
inner product defined by

(ψ1 ⊗ v1, ψ2 ⊗ v2) := 〈ψ1, ψ2〉Hτ (v1, v2)�n,k (41)

and (Aθ,H,D) is a pseudo-Riemannian spectral triple. If n is even the triple (Aθ,H,D)
is even.

Proof. Since�n,k is finite-dimensional and decomposable, each decomposition of�n,k =
V+ ⊕ V− into positive and negative definite subspaces gives rise to a decomposition
H = Hτ ⊗ V+ ⊕Hτ ⊗ V−. Clearly, the subspaces are intrinsically complete. Therefore,
H is a Krein space. Next we show thatD0 is essentially Krein-selfadjoint onH. Clearly,
J := i(k(k+1)/2)γ1 · · · γk is a fundamental symmetry ofH and it is enough to show that the
symmetric operatorJD0 is essentially selfadjoint onH endowed with the scalar product
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induced byJ. The vectorsu(y) ∈ Aθ ⊂ Hτ form a total set inHτ and it is easy to see that
the vectors of the formu(y) ⊗ ψ are analytic forJD0. By Nelsons theoremJD0 is essen-
tially selfadjoint onAθ ⊗�n,k ⊂ H and therefore,D0 is essentially Krein-selfadjoint. For
all a ∈ Aθ we have [D, a] = ik−1∑

i γi(δia), which is clearly a bounded operator. Hence,
(Aθ,H,D) is a pseudo-Riemannian spectral triple. For evenn this triple is even and the
grading operatorχ is just the grading operator in Clc

n,k acting on the second tensor factor.
In casen is odd the triple is odd and we setχ = 1.

In the following we will need the image of the universal differential forms and the junk
forms under the representationπ : ΩAθ → B(H) associated with (Aθ,H,D).

Lemma 7.4. For the above defined pseudo-Riemannian spectral triple we have

π(ΩmAθ) =

∑

j

ajγ(vj1) · · · γ(vjm); aj ∈ Aθ, vji ∈ �n,k


 , (42)

π(dj0 ∩ΩmAθ) =

∑

j

ajγ(vj1) · · · γ(vjm−2); aj ∈ Aθ, vji ∈ �n,k


 . (43)

Proof. The first equation follows from the relation [D, a] = ik−1∑
i γiδi(a). It re-

mains to show that the second equation holds. Letω be the (m− 1)-form (f0df0 −
df0f0)df1 · · · dfm−2 with f0 = ul. We haveδif0 = 2πiδilf0. A short calculation shows
thatπ(ω) = 0 and therefore, the form

π(dω) = −8π2γ2
l f

2
0 [D, f1] · · · [D, fm] (44)

is an element ofπ(dj0 ∩ΩmAθ). TheAθ-module generated by this form is the setAm

of elements of the form
∑
j a

jγ(vj1) · · · γ(vjm−2) with aj ∈ Aθ andvj1, . . . , v
j
k−2 ∈ �n,k.

Therefore,Am ⊂ π(dj0 ∩ΩmAθ). In casem− 1 ≥ n this shows thatπ(ΩmAθ) = π(dj0 ∩
ΩmAθ) and the above formula is a consequence of this. We treat the casem ≤ n. Suppose
thatω =∑j f

j
0df

j
1 · · · df jm−1 and that

π(ω) = γµ1 · · · γµm−1

∑
j

f
j
0δµ1f

j
1 · · · δµm−1f

j
m−1 = 0. (45)

This implies that∑
j

f
j
0δ[µ1f

j
1 · · · δµm−1]f

j
m−1 = 0, (46)

where the square bracket indicates the complete anti-symmetrization of the indices. If we
applyδµ0 to the left of this equation and anti-symmetrize in all indices we obtain∑

j

δ[µ0f
j
0δµ1f

j
1 · · · δµm−1]f

j
m−1 = 0. (47)
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Since

π(dω) = γµ0 · · · γµm−1

∑
j

δµ0f
j
0δµ1f

j
1 · · · δµm−1f

j
m−1, (48)

we finally obtainπ(dω) ∈ Am.

The above lemma implies thatΩDAθ ∼=⊕mAθ ⊗ΛmR
n and the differential is given

by d(a⊗ e1 ∧ · · · ∧ ek) =∑i δi(a) ⊗ ei ∧ e1 ∧ . . . ∧ ek. Hereei is a distinguished basis in
R
n.
Each spacelike reflection inRn,k induces a fundamental symmetryJ̃r of�n,k and clearly,

Jr := id ⊗ J̃r is a fundamental symmetry ofH. All these fundamental symmetries are in
fact equivalent and hence induce the same smooth structure on (Aθ,H,D).

Proposition 7.5. Let r1 and r2 be two spacelike reflections of R
n,k. Then Jr1 ∼ Jr2, i.e.

dom(�sJr1
) and dom(�sJr2

) are equal and carry the same topology for all s ∈ R. Moreover

H∞ = Aτ ⊗�n,k.

Proof. Let E be the spinor bundle on the commutative torusT n,k with the flat pseudo-
Riemannian metric of signature (n,k). LetHc be the Krein space of square integrable sections
of E. The mapW : Hτ → L2(T n,k) defined byW(u(y)) = e2πi(y,x) is unitary and satisfies
WδiW

−1 = ∂i. The mapU := W ⊗ id is an isometric isomorphism of the Krein spaces
H andHc andUDU−1 coincides with ik/D, where/D is the Dirac operator on the torus.
FurthermoreUJrU−1 are admissible fundamental symmetries of the canonical spectral
triple associated withT n,k. As a consequence the operatorsU�JrU

−1 are classical pseu-
dodifferential operators of first order and hence, dom(�sJr

) = U−1Hs(E) for s > 0 where
Hs(E) is the space of Sobolev sections of orders of E. Therefore,Jr1 ∼ Jr2. The equation
H∞ = Aτ ⊗�n,k follows fromW−1C∞(T n,k) = Aθ ⊂ Hτ , which is easy to check.

We view in the following (Aθ,H,D) as a smooth pseudo-Riemannian spectral triple
with the above defined smooth structure and refer to it as the noncommutative pseudo-
Riemannian torusT n,kθ . For simplicity we restrict our considerations to the case where the
algebraAθ has trivial center.

Theorem 7.6. Suppose that Aθ has trivial center. Then the set of admissible fundamental
symmetries of (Aθ,H,D) coincides with the set

{Jr; r is a spacelike reflection of�n,k}.

Proof. Let r be a spacelike reflection of�n,k. By constructionJr is smooth. We first
show thatJr is admissible. Clearly,Jr commutes with all elements ofAθ andJχJ = χ+.
Lemma 7.4shows that indeedJπ(j ∩ΩpA)J = π(j ∩ΩpA) andJπ(ΩA)J = π(ΩA).
Therefore,Jr is admissible. Now suppose conversely thatJ is an admissible fundamental
symmetry. SinceJ commutes withAθ, we can viewJ as an element inA′

θ ⊗ End(�n,k),
whereA′

θ is the commutant ofAθ in B(Hτ). SinceJ is smooth, it is even an element
of Aopp

θ ⊗ End(�n,k), whereAopp
θ denotes the opposite algebra ofAθ which acts onHτ

from the right. The spaceπ(Ω1Aθ) is invariant under conjugation byJ. Therefore, the
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matricesJγiJ must commute with all elements ofAopp
θ and therefore have entries in the

center ofAopp
θ , which is trivial. Hence, the vector space spanned by theγi is invariant

under conjugation byJ. In the same way as in the proof ofProposition 5.1one checks
that the mapr : R

n,k → R
n,k defined byJγ(v)J = (−1)kγ(rv) is a spacelike reflection.

Hence, there exists a spacelike reflectionr of �n,k such thatJγiJ = JrγiJr. Denote bya
the operatorJrJ. Thena commutes with allγi and commutes withχ. Hence,a ∈ Aopp

θ and
therefore,a commutes withJr. We finally get froma+a = aa+ = 1 the equalitya2 = 1.
Since bothJr andJ give rise to positive scalar products,a must be positive in theJr-scalar
product and therefore,a = 1. We conclude thatJ = Jr.

Theorem 7.7. Suppose thatAθ has trivial center. The smooth pseudo-Riemannian spectral
triple (Aθ,H,D) is n+-summable and for all a ∈ Aθ and each admissible fundamental
symmetry J we have

Trω(a�−n
J ) = 1

c(n)
τ(a), (49)

Trω(aD2�−n−2
J ) = (−1)k

n− 2k

n
Trω(a�−n

J ). (50)

Proof. Let E be the spinor bundle on the commutative torusT n,k with the flat pseudo-
Riemannian metric of signature (n, k). LetHc be the Krein space of square integrable sec-
tions ofE. In the proof ofProposition 7.5we constructed an isomorphism of Krein spaces
U : H→ Hc such thatUDU−1 = ik/D, where/D is the Dirac operator onT n,k. Moreover
theUJrU−1 are admissible fundamental symmetries of the canonical spectral triple asso-
ciated withT n,k. Therefore, byTheorem 6.8Trω(�−n

J ) = c(n)−1 and Trω(D2�−n−2
J ) =

(−1)k n−2k
n

Trω(�−n
J ) for all admissible fundamental symmetries. The proof is finished if we

can show that Trω(u(y)�−n
J ) = 0 and Trω(u(y)D2�−n−2

J ) = 0 whenevery �= 0. Let{ψi} be
an orthonormal basis in�n,k. Then the elementsφy,i := u(y) ⊗ ψi ∈ Hτ form an orthonor-
mal basis inH and they are eigenvectors of�−n

J andD2. By Lemma 7.17 in[9] we have
Trω(u(y)�−n

J ) = limp→∞ Tr(Epu(y)�−n
J ), whereEp is the orthogonal projector onto the

subspace generated by the firstn eigenvectors of�−1
J and whenever the limit exists. But

since〈φy,i, u(y′)φy,i〉J = 0 for all y′ �= 0, we get Tr(Epu(y′)�−n
J ) = 0 and consequently

Trω(u(y′)�−n
J ) = 0. The same argument gives Trω(u(y′)D2�−n−2

J ) = 0

8. Outlook

We showed that it is possible to extract the dimension, the signature and a notion of
integration from the spectral data of a pseudo-Riemannian manifold. It would certainly
be interesting if one could obtain the Einstein-Hilbert action in a similar way as in the
Riemannian case (see[12,11]). This can probably not be done straightforwardly, but may
require some averaging of expressions of the form Wres(D2�−n

J ) over the set of admissible
fundamental symmetries, where Wres denotes the Wodzicki residue.
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Another interesting question is, which further conditions on the admissible fundamental
symmetries are necessary in the general situation to guarantee that the functionals Trω(·�−n

J )

and Trω(·D2�−n−2
J ) on the algebra generated byA and [D,A] do not depend on the choice

of J.
As far as the noncommutative tori are concerned we believe that an analogue of

Theorem 7.7holds in case the center ofAθ is not trivial. One should be able to proof
this in a similar way as we did it here for the case of a trivial center.
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