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We introduce the notion of a pseudo-Riemannian spectral triple which generalizes the notion of
spectral triple and allows for a treatment of pseudo-Riemannian manifolds within a noncommutative
setting. It turns out that the relevant spaces in noncommutative pseudo-Riemannian geometry are not
Hilbert spaces any more but Krein spaces, and Dirac operators are Krein-selfadjoint. We show that
the noncommutative tori can be endowed with a pseudo-Riemannian structure in this way. For the
noncommutative tori as well as for pseudo-Riemannian spin manifolds the dimension, the signature
of the metric, and the integral of a function can be recovered from the spectral data.
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1. Introduction

The Gel'fand—Naimark theorem states that any unital commutéativalgebra can be
realized as an algebra of continuous functions on a compact Hausdorff space. In noncom-
mutative geometry one thinks of a noncommuta&Vealgebra as an algebra of functions on
some “virtual” space and tries to imitate geometrical constructions which work for the case
of commutative algebras. Connes functional analytic approach@pde noncommutative
geometry starts with the observation that the metric information of a compact Riemannian
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spin manifold is encoded in the tripled® (M), P, L?(M, S)), wherdp is the Dirac opera-

tor andL?(M, S) is the Hilbert space of square integrable sections of the spinor bundle. The
algebraC®(M) is realized as a-algebra of bounded operators bA(M, S). The space of
characters of °°(M) is canonically isomorphic to the set of points\éaind the Riemannian
distance between to poiptandg can be recovered from the equation

d(p,q) = suplf(p) — f(@)l, [feCM), IIP, fll <1 1)

The noncommutative generalization of the object(M), D, L3(M, S)) is the so called
spectral triple, which we can think of as a generalization of the theory of compact Rieman-
nian manifolds. For a further introduction to noncommutative geometry we would like to
refer the reader t{9,16,22,17]and the references therein.

Recently there have been attempts to get analogues of spectral triples which allow for a
treatment of non-compact manifolds (§86]) and globally hyperbolic Lorentzian mani-
folds (se€18,15,14,13). Such a treatment seems necessary if one wants to study physical
models, which are defined on spaces with Lorentzian rather than Riemannian metrics. The
idea in[10,15,14,13]is to foliate the space—time into Cauchy surfaces and to treat the
Cauchy surfaces as Riemannian manifolds. Whereas this approach seems promising for the
study of evolution equations in physics, its dependence on the foliation and the restriction
to Lorentzian signatures is disturbing from the mathematical point of view.

In this paper we suggest a notion of pseudo-Riemannian spectral triple, which allows
to treat compact pseudo-Riemannian manifolds (of arbitrary signature) within noncommu-
tative geometry. Such a tripled( D, ) consists of an involutive algebtd of bounded
operators acting on a Krein spadeand a Krein-selfadjoint operatdr. An importantrole is
played by the fundamental symmetries of the Krein space. These are opgratérs> H
with 32 = 1 such that{ J-) = (J-, -) is a positive definite scalar product turnigginto a
Hilbert space. They can be used to obtain ordinary spectral triples from pseudo-Riemannian
spectral triples in a similar way as this is done in physics by “Wick rotation”, which is used
to pass to Riemannian signatures of the metric. For exampdagfa Lorentzian spin man-
ifold, A = C§°(M) andD is the Dirac operator which acts on the Krein space of square
integrable section®{ of the spinor bundle, the tripled, D, H) is a pseudo-Riemannian
spectral triple. From the pseudo-Riemannian metrim M one can obtain a Riemannian
metric by applying a so called spacelike reflectiohis is an involutive endomorphism
r: TM — TM of vector bundles such thg{r-, -) is a Riemannian metric. Such spacelike
reflections give rise to a large class of fundamental symmejrimsch that the operator
(1/2)((3D)? + (DJ)?) is a Laplace-type operator with respect to a Riemannian metric. We
can think of this metric as a Wick rotated form of the Lorentzian metric. We use this to
show that one can define a notion of dimension for pseudo-Riemannian spectral triples. In
the commutative case and for the noncommutative pseudo-Riemannian torus we show that
there is a canonical notion of integration and one can recover the signature of the metric
from the spectral data. It should be noted that the “Wick rotation” takes place in the fibres
of TM and therefore does not require a special choice of time coordinates.

In Section2—-5we review the basic notions and results on spectral triples, Krein spaces
and Dirac operators on pseudo-Riemannian manifolds. Sed@iansl 7contain the main
results of this paper.
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2. Spectral triples

Definition 2.1. A spectral triple @, H, D) consists of a unitak-algebra4 of bounded
operators on a separable Hilbert spatand a selfadjoint operat@ on #, such that the
commutator P, a] is bounded for allz € A. A spectral triple is said to be even if there
exists an operatoy = x*, x> = 1 on the Hilbert space such that

xa=ay VaeA, (2)
For a compact operatardenote byu(a) the ordered sequence of its singular values,
i.e. ui(a) are the eigenvalues &f| such thatui(a) > u2(a) > - - -, with each eigenvalue

repeated according to its multiplicity. The characteristic sequencisdiefined by (a) :=
Zf.‘zl wi(a). Let p > 1 be a real number. A compact operatds said to be inC7+ if

ou(a)
supgn(a) <oo for p=1 (5)
n>2 Inn

The space£”+ are two 2-sided ideals iB(#). Note that ifa € £P*, then|a|? € £1F.
Let now[*°(N) be the von Neumann algebra of bounded sequences. If astatE° (N)
satisfies the conditions

o lim, o0 Xy =x = o(x,) = x,
o w(x2,) = w(x,),

we say thatv is in I';(I°°). The setl;(I°°) turns out to be non-empf]. For each positive
a € LY and each state e I';(1°°) we define Ty, (a) := w(x(a)), wherex(a), = o,(a)/Inn
for n > 2 andx(a)1 = 0. It can be shown that for eaaghthe mapz — Tr,(a) extends to a
finite trace onC't and to a singular trace df(#) (se€[8,6]).

Definition 2.2. Let p > 1 be a real number. A spectral triple is callgti-summable if
(1+ D> Y2isinLrt.

In case a spectral triple jg"-summable the map — Tr,(a(1 + D?)~7/?) is well de-
fined on the algebra p generated byl and [D, A]. It can be shown that il is contained
in the domain of smoothness of the derivatégr) := [| D|, -], this map is a trace (s€8]).
A differential operator on a Riemannian manifold is said to be of Dirac type if it is of first
order and the principal symbelof D satisfies the relation

o(£)? = g(t.£)idg, VEeTiM, pe M. (6)

The geometry of a compact Riemannian spin manifold can be encoded in a spectral triple
(se€f6]).
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Theorem 2.3 (Connes).Let M be a compact Riemannian manifold of dimension n and E a
hermitian vector bundle over M of rank k. Let H be the Hilbert space of square integrable
sections of E and let A be C*°(M) which acts on H by multiplication. Assume that D is
a selfadjoint differential operator of Dirac type on E. Then (A, H, D) is an n*-summable
spectral triple. As a compact space M is the spectrum of the C*-algebra, which is the norm
closure of A. The geodesic distance on M is given by

d(p.q) =suplf(p) — fl@)l. feA D fll =L (7)
Furthermore for f € C*°(M) we have
| VI = el O T3+ DY) ®)

where c(n, k) = 2" 2"/%k=In I (n/2).

3. Differential calculus and spectral triples

Let .4 be a unital algebra. Denote by the vector spacet/(C1) and define2" A :
A® A®". We write @g, a1, ..., a,) for the image ofin ® - - - ® a, in 2" A. On A :
> o§2" A one now defines an operaidof degree 1 and a product by

d(a07 sy an) = (1’ a07 R an)v (9)

(@0, - an)ans1. - ar) = > _(—1)"ao. ... qiait1, . ... ). (10)
i=0

This determines a differential algebra structuresaA. If A is a star algebra, one makes
A a star algebra byaf, . .., a,)" := (=1)'(a};, ..., a}) - a§- The pair 2.4, d) is called
the universal differential envelope gf.

A spectral triple @, H, D) gives rise to a-representation af2.4 onH by the map

7 A — B(H), n(ao, az, ..., ay) :=ao[D,a1]---[D,a,], aje A

Let jo be the graded two-sided idefl := @, jj given by
Jo = {w e 2" A;n(w) = 0}. (11)
In general,jp is not a differential ideal. That is why it is not possible to define the space

of forms to be the image(£2.4). However;j := jo + djo is a graded differential two-sided
ideal.

Definition 3.1. The graded differential algebra of Connes forms o¥és defined by

2 "
QpA = 7_“4 = @ A Cate) (djo N 2" A). (12)
J " T
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Example 3.2. The space of one-form@%)A =~ 7(21.A) is the space of bounded operators
of the form

w1=Y df[D.df]. df € A. (13)
k

Proposition 3.3. Let (A, H, D) be as in Theorem 2.3As graded differential algebras
2pA and I'(AM) are isomorphic.

Se€[6, p. 552]or [16, Section 7.2.1{or a proof.
If the spectral triple 4, #, D) is n*-summable the map

w1 X wp — (w1, wa) := Tr,(wiwa(1+ |D|?)~"/?) (14)

defines for each a scalar product on the space of one-forms. In the caBeopiosition 3.3
this scalar product coincides up to a scalar factor with the metric-induced scalar product on
the space of one-forms.

4. Krein spaces
4.1. Fundamentals

Let Vbe avector space ov€r Anindefinite inner productoisamap(,:): V x V —
C which satisfies

(v, 2w + pw2) = A(v, w1) + (v, wa), (v1, v2) = (v2, v1).
The indefinite inner product is said to be non-degenerate, if
(v,w)=0 VYveV=w=0.

A non-degenerated indefinite inner product sp#ds called decomposable if it can be
written as the direct sum of orthogonal subspdégsandV ~ such that the inner product is
positive definite orV+ and negative definite ovi—. The inner product then defines a norm

on these subspaceg and V™ are called intrinsically complete if they are complete in
these norms. A non-degenerate indefinite inner product space which is decomposable such
that the subspacés™ andV~ are intrinsically complete is calledKrein space. For every
decompositionV = V+ @ V~ the operatofj = id ® —id defines a positive definite inner
product (thej-inner product) by-, -)5 := (-, J-). Such an operatgris called a fundamental
symmetry. It turns out that i’ is a Krein space each fundamental symmetry makes
Hilbert space. Furthermore two Hilbert space norms associated to different fundamental
symmetries are equivalent. The topology induced by these norms is called the strong
topology onV. The theory of Krein spaces can be founfh For the sake of completeness

we will review in the following the main properties of linear operators on Krein spaces.
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4.2. Operators on Krein spaces

If Ais alinear operator on a Krein spadeve say thatl is densely defined if the domain
of definition D(A) of A is strongly dense V. Let A be a densely defined operator on a
Krein spaceV. We may define the Krein adjoimt™ in the following way. LetD(A™) be
the set of vectors, such that there is a vector with

(v, Aw) = (v, w) Yw e D(A). (15)

We setA™v := vT. A densely defined operator is called Krein-selfadjoimit= A™. An
operator is called closed if its graph is closed in the strong topology, i.e. if the operator
is closed as an operator on the Hilbert space associated to one (and hence to all) of the
fundamental symmetries. If the closure of the graph of an ope#atothe strong topology

is an operator graph, thenis called closeable, the closufieis the operator associated with

the closure of the operator graph. It turns out that a densely defined opgiattipseable

if and only if AT is densely defined. The closurefs then givenbyd = AT+ = (4A™)*.
Clearly, a Krein-selfadjoint operator is always closed. A densely defined operator is called
essentially Krein-selfadjoint if it is closable and its closure is Krein-selfadjoint. Note that
for any fundamental symmetry we have the equality = JA*J, if the star denotes the
adjoint in the Hilbert space defined by thenner product. Therefore, given a fundamental
symmetryJ and a Krein-selfadjoint operatdr, the operator§A and AJ are selfadjoint

as operators in the Hilbert space induced by3tener product. The symmetric operators
Re((1/2)(A + A*)) and Re((f2)(A — A*)) are called real and imaginary partsAfThe

sum of the squares of these operators is formally giverd)y (= (1/2)(A*A + AA*). It

is natural to define thg-modulus ofA as its square root. For a special class of fundamental
symmetries this can be done straightforwardly. We have the following proposition.

Proposition 4.1. Let A be a Krein-selfadjoint operator on a Krein space V. Let J be a
Sfundamental symmetry, such that dom(A) N Jdom(A) is dense in V. Let (-, -) be the scalar
product associated with Jj. Then the quadratic form

q(¢p1, ¢2) = 3((Ad1, Ad) + (A*p1, A*¢2)) (16)

on dom(A) N Jdom(A) is closed and the unique selfadjoint operator (A)y associated with

this form commutes with J. Therefore, it is Krein-selfadjoint. Moreover dom((A)l/ 2) =
dom(A) N gdom(A).

Proof. Since bothA and A* are closed, the quadratic form is closed as well. We re-
peat the construction of the selfadjoint operator associated with this fornjil@e€heo-
rem VIII.15]). DenoteW = dom(A) N Jdom(A). The pairing of the scalar product yields
an inclusion of space® c V c W*, whereW* is the dual space diV. We define the
operatorB : W — W* by [Bo|(¥) := q(v, ¢) + (¥, ¢). B is in isometric isomorphism.
With dom(B) := { € W; By € V} the operatoB := Blgom) : dom(B) — V is selfad-
jointand (A); = B — 1. By constructiorj restricts ori¥ to a norm preserving isomorphism
and its adjoint maﬁ W* — W* is the continuous extension ®f From the definition of

B we get immediatelyBJ = 3" B. Therefore, dom();) = dom(B) is invariant under the
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1/2)

action ofy and furthermore4); andy commute. The form domain of\(; is dom((A);

and we conclude that domﬁ(ﬁ/z) =W.

We therefore make the following definition.

Definition 4.2. LetA be a Krein-selfadjoint operator on a Krein spacand suppose thgt
is a fundamental symmetry such that deth() Jdom(A) is dense irV. Then thej-modulus

[A]; of A is the Krein-selfadjoint operatoﬂog 2 constructed above.

4.3. Ideals of operators on Krein spaces

Since allJ-inner products define equivalent norms, properties of operators like bound-
edness and compactness, which depend only on the topological structure of the Hilbert
space, carry over to Krein spaces without change. The algebra of bounded operators in a
Krein spaceV will be denoted by3(V). Each fundamental symmetgydefines a norm on
B(V) by |lallz := sup,(llavliz/llvli3), where||v||§ = (v, Jv). The norms orB(V) induced
by different fundamental symmetries are equivalent. We choose a fundamental symmetry
J and viewV as a Hilbert space with thg-inner product. Sinc&€?" are ideals in3(V),
we haveB—1£P+ B = £P* for any invertible operator it8(V). Therefore, the definition of
LPT does not depend on the choice of scalar product and consequently it is independent
of the chosen fundamental symmetry. The same argument applies to the Dixmier traces.
Let w € I,(I*) be fixed. Then for any: € £ and any invertible operator iB(V) we
have T¢,(B~1aB) = Tr,,(a). Therefore, the Dixmier trace does not depend on the choice of
fundamental symmetry. We conclude that bgf and Tg, make sense on Krein spaces
without referring to a particular fundamental symmetry.

5. Clifford algebras and the Dirac operator
5.1. Clifford algebras and the spinor modules
Let g, x be the quadratic forng(x) = —x§ —--- —x2 +x2,; + -+ +x2 onR". The

Clifford algebra Cj x is the algebra generated by the symbelg with x € R"” and the
relations

x — c¢(x) islinear, a7)
c(x)? = gnr ()1 (18)

Let CI , be the complexification of Gl endowed with the antilinear involutiohdefined
by c(v)* = (—1)fc(v). For n even the algebra 6} is isomorphic to the matrix algebra
Matc(2"/2), for n odd it is isomorphic to Mat(2"/2]) @ Matc(21"/2)). Let o1, 0o, 03 be
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the Pauli matrices and define

] i for j <k,
©(j) = .
1 for j > k.

Forn even we define the isomorphisty, 4 : CI}, ;, — Matc(22) by

Ppi(c(x2j+1) == 1(2j+ 1) 03® - ®03®01Q1® - ®1,
—_———

Jj-times

Dy (c(x2)) ==1(2)) - 03® - ®03®12Q1® -1
—————

(j—1)-times

Whereas for oda = 2m + 1 we define®,  : Cl; , — Matc(2l"/?) ® Matc(21/2)) by

1 (c(x ) = Do i(c(x5)) ® Do i(c(x;)) forl<j<2m,
nk\\Aj)) = (M03® - @03)B(—03® --- Q03)} for j =2m + 1.

For evern the isomorphism®, ;. gives an irreducible representation oﬁgglon Apg =

(CZ"/Z, whereas fom odd we obtain an irreducible representation &y = c2 by
restricting®,, x to the first component. The restrictions of these representations to the group
Sping, k) C Cl, x are the well known spinor representations/y. In the following we

write y(v) for the image of(v) under this representation. In casé even we define the
grading operatoy := i("(:=1/2-+k (1) . . . y(x,,). We have

=1 (19)

xy(v) +y()x =0. (20)

There is no analogue to this operator in the odd-dimensional case. There is a natural non-
degenerate indefinite inner product on the modwgg given by

(u, v) = {2 (1) -y (v, v) ot (21)

This indefinite inner product is invariant under the action of the group 8pit which is
the double covering group of S@(k) ™. Furthermore the Krein-adjoidt, «(x)* of @, 4 (x)
is given by®,, 1 (x™). If n is even, one gets for the grading operatdr= (—1)*x. Up to a
factor this inner product is uniquely determined by these properties.

5.2. Fundamental symmetries of the spinor modules

Let nown andk be fixed and denote by the unique bilinear form ofiR” such that
g(v, v) = gn.x(v). Aspacelike reflection is linear map R"” — R” withr? = 1,g(ru, rv) =
g(u, v) for all u, v € R” such thatg(-, r-) is a positive definite inner product. Each such
reflection determines a splitting” = R* @ R"~* into g-orthogonal eigenspaces ofor
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eigenvalue-1 and+1. Clearly,g is negative definite on the first and positive definite on
the second summand. Conversely for each splitting"ahto a direct sum og-orthogonal
subspaces such thais negative or positive definite on the summands determines a spacelike
reflection.

To each such spacelike reflection we can associate a fundamental symmetry of the Krein
spaceA, x. We choose an oriented orthonormal basis (.., e) in the eigenspace for
eigenvalue-1. Thenthe operatdy. := iK¢+1D/2)y (1) . . . y(¢;) is afundamental symmetry
of A, x and we havg, y(v)3, = (—1Fy(rv). Ingeneral, not all the fundamental symmetries
are of this form. The following criterion will turn out to be useful.

Proposition 5.1. Let J be a fundamental symmetry of the Krein space A, i such that for
eachv € R" C CI} ; the matrix

@r) + ()

is proportional to the identity. If n is even assume furthermore that § commutes or an-
ticommutes with the grading operator x. Then there is a spacelike reflection r such that

3:3r-

Proof. By assumptiorh(u, v) = (—1{Jy ()3, y(v)} = {y(u)*, y(v)} is a real valued bi-
linear form onR", where{-, -} denotes the anti-commutator and thés the adjoint in
the J-scalar product. Clearly;(v, v) > 0 for all v € R". Therefore, there exists a matrix
a € End(R") such that

{y(@)*, y(v)} = {y(au), y(v)} (22)

for all u,v € R". As a consequenc&u) = y(u)* — y(au) anti-commutes with all el-
ementsy(v). In the odd-dimensional case there is no such matrix other than 0 and
in the even-dimensional casemust be a multiple of the grading operator. Therefore,
y*(v) = (=1)*Jy(v)J can be written as a sugav) + A(v)x, wherex is a linear form on

R”. Fromy(v)** = y(v) andJxJ = +x we geta® = 1. For eigenvectorsv = +v of a one

gets from the equation/(v)*)2 = y(v)? thati(v)? = 0. Hence i = 0. We showed that for

n even or odd we always hage/(v)J = (—1)*y(av), for a reflectioru. The bilinear fornh
ish(u, v) = (u, av) and since itis positive semi-definite amtas trivial kernel, itis positive
definite. Thereforeq is a spacelike reflection and consequeftly (v)J, = (—1)y(av).

It remains to show th&}, = J. From the above relation one gé3,y(v)J.J = y(v), and
therefore, 33, commutes with ally(v) and has to be a multiple of the identity. Hence,

3 = 23, for some complex number. From32 =32 =1, 37 =3, and3* = J we get

z = £1. Since the fundamental symmetries both give rise to positive definite scalar prod-
ucts onA,, ¢, we conclude thag = 1 andy = J,,.

5.3. Pseudo-Riemannian geometry and the Dirac operator

Let M be a smooth-dimensional manifold. A pseudo-Riemannian megrion M is a
smooth section in the bundl&* M ® T*M, such that for allk € M the bilinear formg,
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onT; M x Ty M is non-degenerate. f;(v, v) = g, x(v) for a special choice of basis we
say thatg, has signaturen( k). If g, has signaturen( k) for all x € M the metric is called
pseudo-Riemannian. If the signatureas@) then the metric is called Riemannian, in case
the signature isn, 1) the metric is called Lorentzian. A vector fiedds called timelike
(spacelike, lightlike) ifg(&, £) < 0, (>0, =0). The metric can be used to identif{yM and
TM and thereforeg can be regarded as a sectiorfit ® TM inducing a scalar product on
T:M. See[l] or [2] for elementary properties of pseudo-Riemannian manifolds.

If (M, g) is a pseudo-Riemannian metric of signaturgk], then the tangent-bundiig/s
can be splitinto an orthogonal direct sUitd = Ff &) Fg_k, whereg is negative definite on
F§ and positive definite oﬁgfk. For such a splitting we can define amapTM — TM by
r(x, k1 @ k2) := (x, —k1 @ k2). Thenthe metrig” defined by’ (a, b) := g(a, rb) is positive
definite. Conversely suppose there is an endomorphism of vector bundldg — TM
with g(r-, ) = g, 2 = id and such thag” := g(-, ) is positive definite. Then there is a
splitting such that(x, k1 & k2) = (x, —k1 & k2). We call such maps spacelike reflections.
Obviously,r : TM — TM is a spacelike reflection, if the restrictionsrab the fibresr, M
are spacelike reflections in the sense of the last section. In the following we’” dhie
Riemannian metric associated with

In case the bundl&M, (Ff, Fg"‘) is orientable the manifold is called orientable (time-
orientable, space-orientable). Assume we are given an orientable, time-orientable pseudo-
Riemannian manifoldM, g) of signature £, k). Then the bundle of oriented orthonormal
frames is an SQ, k)*-principal bundle.

We saw that the metric information of a Riemannian manifold can be encoded in a
spectral triple, wher® was any Dirac type operator on some hermitian vector bufidie
the case of pseudo-Riemannian manifolds there arises a major problem. Namely that Dirac
type operators are not selfadjoint any more. We will see however that there exists a Krein
space structure on the space of sectiong sfich that there are Krein-selfadjoint Dirac
type operators. Assume now thitis an orientable time-orientable pseudo-Riemannian
manifold. LetE be a vector bundle ovél and assume thd is of Dirac type. This means
thatD is afirst order differential operator and the principal synebol D satisfies the relation

o(§)’ =g(6.8)idg, VeeTiM, peM. (23)

Thereforey := o satisfies the Clifford relations, which makEs module for the Clifford
algebrabundle. Let: TM — TM be a spacelike reflection and identify/ with 7* M using
the metric. LeT*M = Ff @ Fgf" be the splitting such thatx, k1 @ k2) = (x, —k1 @ k2).
Then there is a hermitian structufe-) on E such that,(£) is anti-symmetric it € F&
and symmetric i e FI7K, Let e1, ..., e, be alocal oriented orthonormal frame fEf
and definey := i*&+1)/2(e1) ... y(er). J is independent of the choice of frames and
the indefinite inner product,(), := (-, J(x)-)x on E is non-degenerate. It maké&san
non-degenerate indefinite inner product bundle. Moreotey,is symmetric with respect
to this indefinite inner product. The space of square integrable sectiafissod Krein
space endowed with the indefinite inner product structure

(fg) = /M (s g)ey/Tgl dx. (24)
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To each spacelike reflectiohwe can associate a fundamental symmgtnof this Krein
space by, 1= i®&+tD/2)(e1) .- y(ex), Whereer, . . ., e is a local oriented orthonormal
frame for Ff. We conclude that for a time-orientable orientable pseudo-Riemannian
manifold there exists a Dirac type operafdron some non-degenerate indefinite inner
product vector bundI& such thatiD is symmetric with respect to this inner product. The
following theorem was proved for Dirac operators on spin manifoldgjinFor the sake

of completeness and since the original proof is in german, we give a proof here.

Theorem 5.2 (Baum([2]). Let E be a non-degenerate indefinite inner product vector bundle
over an orientable time-orientable pseudo-Riemannian manifold M™*. Let D : I'o(E) —
I'o(E) be a symmetric differential operator such that i*D is of Dirac type. If there exists
a spacelike reflection r such that the Riemannian metric associated with this reflection is
complete, then D is essentially Krein-selfadjoint. In particular, if M is compact then D is
always essentially Krein-selfadjoint.

Proof. LetJ be the fundamental symmetry associated with the splitting ancflgf) be
the Hilbert space of sections which are square integrable with respect to the positive definite
inner product induced b§. We denote this scalar product in the following by-). It is
clearly sufficient to show thal = JD is essentially selfadjoint ii2(E). Note thatP is a
first order differential operator which is symmetriclid(E). Therefore, itis closeable. The
proof consists of two steps. Let dg(P*) be the intersection of don®(") with the space
of compactly supported square integrable section. We first show thai(@$inc dom(P).

In the second step we show that dg{i?*) is dense in the Hilbert space doRi{) endowed
with the scalar produdty, y) p+ := (x, y) + (P*x, P*y). The combination of these results
shows that don¥) is dense in the Hilbert space dof(), and thereforeP is essentially
selfadjoint.

First step. Note that sinceP is symmetric, the operataP* is a closed extension of
P, and furthermore the adjoint operatBf : D'(E) — D'(E) is the continuous extension
of P and P* to the space of distributions. Assume tfigg in dony(P*). Then bothy and
g = P* f have compact support. Cleartys a weak solution to the equatidf = g, hence,
it is also a strong solution (see e[@1, Prop. 7.4}, i.e. there is a sequengg converging
to fin the L?-sense such thakf, converges tg also in theL?-sense. Thereforg,is in
dom(P).

Second step. Assume thalf € dom(P*). We will construct a sequencg in domg(P*)
such thatf, — f and P*f, — P*f in the L?-sense. Fix ang € M and let dist¢) be a
regularized distance function fromp in the complete Riemannian metric associated with
the splitting. Choose a functione Ca°(R)with0 < x <1, x(r) =0fort > 2, x(r) = 1
for t <1, and|y/| < 2. We sety,(x) := x((1/n)dist(x)). By completeness of the man-
ifold, all x, are compactly supported. We define the sequefice= x, f and clearly,
fu € dompy(P*). Denoting by the principal symbol oD, we haveP’ f,, = —iJo(dx,) f +
x. P’ f. Clearly, x,P'f — P'f in the L?-sense. For the first summand we have the
estimate

130(d) 12 < /

By —By

4
n—znfuz, (25)
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where B, denotes the metric ball with radiuscentred atrg. Since the right hand side
vanishes in the limit — oo, we conclude thaf, — f andP’f, — P’ f intheL?-sense.
Therefore, dom( P*) is dense in the Hilbert space doRif).

Example 5.3. A spin structure on a time-oriented oriented pseudo-Riemannian manifold
M™* is an Sping, k)*-principal bundleP over M™* together with a smooth covering
from P onto the bundl€ of oriented orthonormal frames, such that the following diagram
is commutative.

P x Sping, k)t — P — M™*

i % I (26)
Q0 xSO@, k)t — Q — M™K

Herex denotes the covering map Spink)*t — SO, k). The spinor bundlé associated
with a Spin structure is the associated burlle, A, x, wherer denotes the representation
of Sping, k)™ on A, ;. LetV : I'(S) — I'(S) ® A® be the Levi—Civita connection on the
spinor bundle. The Dirac operatpris defined by—iy o V, wherey denotes the action of
covector fields on sections of the spinor bundle by Clifford multiplicatipis clearly of
Dirac type and it was shown [2] (see als¢3]) that the space of square integrable sections
of S is a Krein space such thdf is symmetric.

6. Pseudo-Riemannian spectral triples

Definition 6.1. A pseudo-Riemannian spectral triple is a tupig O, H), whereA is a
pre-C*-algebra of bounded operators on a Krein sp#iceuch thaia* = a™, andD is a
Krein-selfadjoint operator oK, such that the commutato® [a] are bounded forali € A.

A pseudo-Riemannian spectral triple is called even if there is a distinguished opgrator
anticommuting withD and commuting with4 and withx? = 1 andx* = +x. If such an
operator does not exist we say the spectral triple is odd and set by defjnitoh We call

x the grading operator.

Here a pre€c*-algebrais defined to be a normedlgebra whose closure i -algebra.
We will see later that it is natural to assume in addition the existence of a fundamental
symmetryy which commutes with all elements j#. This endowsH with the structure of
a Hilbert space andl becomes &-subalgebra o8(#). However, at the moment such an
assumption is not necessary and we will therefore not assume this explicitly.

For a pseudo-Riemannian spectral triple we can repeat the construction of differential
forms almost unchanged. Denote again the universal differential envelopkyof2 A, d).
Clearly, the map

7 QA — B(H), n(ao, ai, ..., ap) =ao[D,a1] ---[D,a,], aje A

is a representation g2.A on # such thatr(a*) = #(a)™ for all a € 2.4, where™ denotes
the Krein adjoint. We define the graded two sided idgalk= &, jj by

Jo = {w € 2" A; n(w) = 0} 27)
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and as in the case of spectral triples= jo + djo is a graded two-sided differential ideal.
We define2p A := 2A/j. Clearly, 2, A >~ (2" A)/m(djo N 2" A).

Example 6.2. Suppose thatM”™* is a compact time-orientable orientable pseudo-
Riemannian spin manifold with spinor bundie Let  be the Krein space of square
integrable sections of and letD = i*]p, where]p is the Dirac operator. Then the triple
(C°(M), D, H) is a pseudo-Riemannian spectral triple, and in the same way as this is
done for the Riemannian case one shows that as a graded differential ayedra(M)

is canonically isomorphic to the algebra of differential formsMnWe call this triple the
canonical triple associated wit.

For Riemannian spin manifolds the differential structure is encoded in the Dirac oper-
ator. For example the space of smooth sections of the spinor bundle coincides with the
space(), dom(D"). This is essentially due to the ellipticity of the Dirac operator. In
the pseudo-Riemannian case the Dirac operator is not elliptic any more and sections in
), dom(D") may be singular in the lightlike directions. We will circumvent this problem
by introducing the notion of a smooth pseudo-Riemannian spectral triple. A.dd,(H)
be a pseudo-Riemannian spectral triple and suppose there is a fundamental symmetry, such
that dom) N J dom(D) is dense irf{. Then the operaton := ([D]3 + 1)/2 is a self-
adjoint operator on the Hilbert spagéwith scalar product:(J-). Let %3 be the closure of
Na dom(af) inthe norm||/||s := [|Aj||. We have fos > 0 the equality{ = dom(A3),
and the indefinite inner product Gfican be used to identifj(; with the topological dual of
Hy'. We defineHS® = (N, Hj andH ;™ = [J; H3. Amapa : H™> — H~*issaidtobe
in op; if it continuously mapg<* to #°~". Clearly,Aj € op}J andJ e op?. We introduce an
equivalence relation on the set of fundamental symmejreesh that domip) N J dom(D)
is dense irf{ in the following way. We say tha}; ~ 3 if H3 = #3, as topological vector
spaces. If we are dealing with a distinguished equivalence class, we will leave away the
indexJ and write e.g. opfor op; and#* for #3, since these objects clearly depend only
on the equivalence class pf The spaces dphave been introduced [i@] in the context of
spectral triples.

Definition 6.3. A smooth pseudo-Riemannian spectral triple is defined to be a pseudo-
Riemannian spectral tripled, D, H) together with a distinguished non-empty equivalence
class of fundamental symmetrigq,[such thatD € op'. We say a fundamental symmetry

is smooth ify € [J].

Example 6.4. Suppose thatV™* is a compact orientable time-orientable pseudo-
Riemannian spin manifold and letl( D, H) be its canonical pseudo-Riemannian spectral
triple. Let E be the spinor bundle. For each spacelike reflectiove constructed in the
previous section a fundamental symme3yyof the Krein spacé{. The fundamental sym-
metries of the fornjj, belong to one and the same equivalence class and therefore define a
smooth pseudo-Riemannian spectral triple. This can most easily be seen using the calculus
of operators. Note thak is an elliptic classical operator of order 1. Therefdts, coin-

cides with the Sobolev spadé (M, E) of sections oft andH> coincides with the space
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of smooth sectiong’(E). In the following we will think of the canonical triple associated
with M as a smooth pseudo-Riemannian spectral triple with the above smooth structure.

Suppose that4, D, H) is a smooth pseudo-Riemannian spectral triple Jh&tndJ, be
smooth fundamental symmetries. Thei" is in op~* and therefore ;, A7 " is bounded.

As a consequencﬁgll is in £P7T if and only if Agll isin LPT.

Definition 6.5. We say a smooth pseudo-Riemannian spectral triglel, #) is p™-
summable if for one (and hence for all) smooth fundamental symme}ribe operator
A7tisinLr.

For the canonical triple associated with a pseudo-Riemannian spin manifold we have a
distinguished set of fundamental symmetries, namely those which are of they ferf).
for some spacelike reflection We may ask now if there is an analogue of this set in the
general case.

Definition 6.6. Let (A, H, D) be a smooth pseudo-Riemannian spectral triple. We say a
fundamental symmetry is admissible if

J is smooth.

Ixd=x".

J commutes with all elements of.
In(2PA)J = n($27 A).

In(djo N 2P A)J = n(djo N LPA)if p > 2.

agrwdE

If J is admissible and denotes the adjoint in thg-inner product, then the above
conditions imply that* = a* for all a € A, x* = x and that* leaves the spaceg/ A
invariant. The following theorem shows that in the case of a canonical triple associated with
a spin manifold the set of admissible fundamental symmetries is canonically isomorphic to
the set of spacelike reflections.

Theorem 6.7. Suppose that M"™* is an orientable time-orientable compact pseudo-
Riemannian spin manifold and let (A, D, H) be its canonical smooth triple with grading
operator x. Then the set of admissible fundamental symmetries coincides with the set

{3, risaspacelike reflectign

Proof. We first show thafj, is admissible. Clearlyy, commutes with all elements of
andJxJ = xT. Moreover, is smooth by construction (s&xample 6.3 We need to show
that the setg(£2”.A) andr(djo N £27 A) are invariant under conjugation By. We denote
by y the principal symbol oD. Since D, f] = —(i)**1y(df), the spacer($2” A) is the

set of operators of the forf; f/y(vy) - - - ¥(vp), where f/ € C*°(M) anduy, ..., vp €
I(T*M). SinceJ,y(v)J, = (—1Fy(rv), this space is invariant under conjugation gy
The proof of Proposition 7.2.2 if16] shows thatr(djo N £27.A) coincides with the set of
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operators of the formy; f/y(vy) - -- y(v),_,), wheref/ € A, vi, ..., v] € T*M. This set

is also invariant under conjugation By and we conclude th&}, is admissible. Suppose
now we have another admissible fundamental symniry[J,]. SinceJ € op?, it acts
continuously or"(E) and sincey commutes with4, it leaves the fibres invariant. It follows
thatJ is a smooth endomorphism of the spinor bundle. For a pontM we denote by
J(x) the restriction ofj to the fibre at. SinceJ is admissibley - J must leave the space of
one-forms invariant. This implies that for alle T M the matrixJ(x)y(v)J(x) is again of
the formy(u) for someu € T; M. By Proposition 5.%here exists a spacelike reflection on
the fibre atv inducingJ(x). Therefore, there is spacelike reflectiosuch thafy = J,.

Theorem 6.8. Suppose that M™* is a compact orientable time-orientable pseudo-
Riemannian spin manifold and let (A, D, H) be the canonical smooth pseudo-Riemannian
spectral triple associated with M. Then (A, D, H) is nt-summable and for each f €
C>®(M) and each admissible fundamental symmetry J we have

/ £ = en) Tro(fA3"), (28)
M

where integration is taken with respect to the pseudo-Riemannian volume form /|g| and
c(n) = 20~ 1/2=171/2 [ (n/2). Moreover with the same f and §

n—2k

Tro(fD?A;" %) = (1) Tro(fA5"). (29)

Proof. Letg” bethe Riemannian metric associated with a spacelike reflection. By construc-
tion the metric volume form o§” coincides with the metric volume form of the pseudo-
Riemannian metric. Now the principal symhsi of Aj, is given byoi(k) = /g"(k, k)

for covectorst € T*M. Connes’ trace formula gives E(8). What is left is to show that

Eq. (29) holds. The operatoDzAg"‘2 is a classical pseudodifferential operator of order

—n and its principal symbat is given byoo (k) = (—1Yg(k, k)g’ (k, k)~"/?>~1. Therefore,

the principal symbol oﬁ”DZAg"‘Z is foo. In order to calculate the relevant Dixmier trace

we have to integrate this symbol over the cosphere bundle in some Riemannian metric. The
result will be independent of the chosen Riemannian metric. In gasg, we useg” to
integrate. On the cosphere bundilerestricts to 1) g(k, k). Therefore,

Tr, (fD2A5"2) = ()( 1 Vol(s"~Y)~ / fs (30)

For local integration we can choose an oriented orthonormal féame ., k, such that
gki, ki) =—1fori=1,...,kandg(k;,k;) = 1fori =k +1,...,n. This shows that

fore=c ([ 1) [ g mgrdus e

— (1) Vol(sHL = / f (31)

which concludes the proof.
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Eq. (29) shows that one can indeed recover the signature from the spectral data and that
the notion of integration is independent of the chosen admissible fundamental symmetry.

The conditions for a fundamental symmetry to be admissible are in a sense minimal
and it is not clear at this point that one does not need further conditions in order to get a
sensible noncommutative geometry. For example one may require in addition that the set
AU[D, A]is contained in the domain of smoothness of the derivaij¢) = [Aj, -]. This
is clearly true for admissible fundamental symmetries in the case of a canonical spectral
triple associated with a manifold. In the general case however we can not expect this to
hold. We think it is also worth noting that for the classical situation there exist a number of
equivalent definitions of admissibility. For example one has

Proposition 6.9. Let (A, D, H) be as in Theorem 6.8Assume that J is a smooth funda-
mental symmetry that commutes with all elements of A and JxJ = x*. Then AU [D, A]
is contained in the domain of the derivation 83 if and only if J is admissible.

Proof. By assumptiorfj is a smooth endomorphism of the spinor bundle.J(@) be the
restriction to the fibre at. Denote by the principal symbol ob. The principal symbaht

of the second order pseudodifferential operaléris given byA,(v) = 3(Jo.(v)Jox(v) +

0 (V)0 (v)J) for v e T M. The principal symbol of\y is AY/2. Assume now thatd, a]

is bounded for alk in AU [D, A]. Then the principal symbol of the first order operator
[Aj5, a] must vanish. This implies thaﬁti/z(v) commutes with alb,(x); u € Ty M. Since
the Clifford action is irreducibled,(v) is a multiple of the identity and biproposition 5.1
we haveJ = J, for some spacelike reflection

7. The noncommutative tori

Definition 7.1. Let6 be a pre-symplectic form dR”. We denote by, the unitalC*-algebra
generated by symbolgy), y € Z" and relations

u(y)* =u() (32)
u(yn)u(yz) = €7012u(y; + y2). (33)
Let S(Z") be the Schwarz space ov#t, i.e. the space of functions &f with

s%p(1+|y|2)f’|a(y)|2<oo VpeN. (34)
ye n

The rotation algebraly is defined by

Agi=qa= Y a(u(y); acSZ") ;. (35)

yeE zn
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It is well known that the linear functional: A4y — C defined by

T (Z a(y)u(y)> = a(0) (36)

r

is a faithful tracial state ovedy. In particular we have(a*a) = >,z la(y)|2. Note that
Ay is generated by the elements := u(ey), wheree, are the basis elements#t. They
satisfy the relations

up = uk_l, (37)
upu; = €0y, (38)

Definition 7.2. The basic derivation&, ..., §, on Ay are defined by

il Y a(u(y) | =27 > yja(y)u(y). (39)

yGZ” yEZ”

One checks easily that these are indeed derivations.

Let H. be the GNS-Hilbert space of the stateSincer is faithful, #, coincides with
the closure of4y in the norm||a||§ = t(a*a). The basic derivations extend to closed skew-
adjoint operators ofi{,;. Denote byR™* the vector spac®” endowed with the indefinite
metric g, » and let C} , be the corresponding Clifford algebra. L&t, x be the natural
Clifford module for Cf, ;. Denote byy(v) the representation d&&" C CI; , on A, x. We
choose a basif;} in R” such that they; := y(e;) satisfyyi2 =—-1fori=1,...,kand
yl? =+41fori =k+1,...,n. We have the following proposition.

Proposition 7.3. Let H = H,; ® A,k and let D be the closure of the operator

Do :=i*"t (2’1: Vi5i> (40)
i=1

on H with domain dom(Do) = Ay @ A, k. Then H is a Krein space with the indefinite
inner product defined by

(V1 ® v1, Y2 ® v2) == (Y1, ¥2) %, (V1. v2) A, 4 (41)

and (Ap, H, D) is a pseudo-Riemannian spectral triple. If n is even the triple (Ag, H, D)
is even.

Proof. SinceA,  is finite-dimensional and decomposable, each decompositiap pi=

V+ @ V~ into positive and negative definite subspaces gives rise to a decomposition
H=H,® V" ®H.® V™. Clearly, the subspaces are intrinsically complete. Therefore,
H is a Krein space. Next we show thBy is essentially Krein-selfadjoint oi. Clearly,

3 := i*k&+1/2)y, ...y, is a fundamental symmetry 6{ and it is enough to show that the
symmetric operatof Dy is essentially selfadjoint o endowed with the scalar product
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induced byJ. The vectorsi(y) € Ay C H. form a total set ir{; and it is easy to see that
the vectors of the form(y) ® ¢ are analytic fory Dg. By Nelsons theorefDg is essen-
tially selfadjoint ondy ® A, x C H and thereforeDg is essentially Krein-selfadjoint. For
all a € Ay we have P, a] = i*"1 3", y;(8;a), which is clearly a bounded operator. Hence,
(Ap, H, D) is a pseudo-Riemannian spectral triple. For exehis triple is even and the
grading operatoy is just the grading operator in | acting on the second tensor factor.
In casen is odd the triple is odd and we sgt= 1

In the following we will need the image of the universal differential forms and the junk
forms under the representatian 2.4y — B(#) associated withAy, H, D).

Lemma 7.4. For the above defined pseudo-Riemannian spectral triple we have

a(2" Ag) = { D aly(w]) - y(vh): a € Ag. vl € Apiy (42)

2(djo N 2" Ag) = { > aly(v]) - y(vl, o) al € Ag.v] € Auy p . (43)
j

Proof. The first equation follows from the relationD[a] = i*~13"; yi6i(a). It re-
mains to show that the second equation holds. kdbe the  — 1)-form (fodfo —
dfofo)dfyr- - -dfm—2 with fo = u;. We haves; fo = 2rid; fo. A short calculation shows
thatz(w) = 0 and therefore, the form

n(dw) = —87%7 f§[D, fal--- D ful (44)
is an element ofr(djo N 2™ Ag). The Ayp-module generated by this form is the s&t
of elements of the forny _, aJy(vl) y(v!_5) with a/ € Ag and vy, ..., vi_, € Apx.

Therefore A™ C n(djo N 2™ Ap). In casen — 1 > n this shows thadr(QmAg) =n(djo N
2" Ap) and the above formula is a consequence of this. We treat thercase. Suppose
thatw = 3=, fadfi - --df;,_, and that

(@) = Viy *** Vit 1Zfo 1f1 Sptm— 1f 1=0 (45)

This implies that

zfo l‘«lfl St ﬂfm 1=0, (46)

where the square bracket indicates the complete anti-symmetrization of the indices. If we
applysé,, to the left of this equation and anti-symmetrize in all indices we obtain

Z‘S[uofo lel Syt 1]fm 1=0. (47)
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Since
7(d®) = Vo *** Vit 123uofo /l«lfl Sptm1 r{z—lv (48)

we finally obtainz(dw) € A™.

The above lemma implies th&2p.A¢ = P),, A9 ® A™R" and the differential is given
bydla@eiA---Aex) =5, 8i(a) ®ei ANer A ... Aeg. Heree,; is adistinguished basis in
R",

Each spacelike reflection ®** induces a fundamental symmeﬁ,yof An r and clearly,
J, :=id ® J, is a fundamental symmetry 6{. All these fundamental symmetries are in
fact equivalent and hence induce the same smooth structurd,oi{( D).

Proposition 7.5. Let r1 and r» be two spacelike reflections of R™*. Then J r ™~ Jrp L€
dom(A§rl) and dom(Af“er) are equal and carry the same topology for all s € R. Moreover

= Ar ® An,k-

Proof. Let E be the spinor bundle on the commutative toftfs® with the flat pseudo-
Riemannian metric of signature, k). Let?{. be the Krein space of square integrable sections
of E. The mapW : H, — L%(T"¥) defined byW («(y)) = "% is unitary and satisfies
ws;W—1 = 9. The mapU := W ®id is an isometric isomorphism of the Krein spaces
H andH. and UDU~? coincides with ijp, wherep is the Dirac operator on the torus.
FurthermoreUJ,U~1 are admissible fundamental symmetries of the canonical spectral
triple associated witl”*. As a consequence the operatots; U~ 1 are classical pseu-
dodifferential operators of first order and hence, dafmj = lH (E) for s > 0 where
H (E) is the space of Sobolev sections of orslef E. Therefore*;,l Jr,- The equation

= A, ® A, follows from W=1C>®(1%) = Ay C H,, which is easy to check.

We view in the following {4y, #, D) as a smooth pseudo-Riemannian spectral triple
with the above defined smooth structure and refer to it as the noncommutative pseudo-
Riemannian torug;"*. For simplicity we restrict our considerations to the case where the
algebraAy has trivial center.

Theorem 7.6. Suppose that Ay has trivial center. Then the set of admissible fundamental
symmetries of (Ag, H, D) coincides with the set

{3, risaspacelike reflection &, x}.

Proof. Let r be a spacelike reflection af, ;. By constructionJ, is smooth. We first
show that, is admissible. Clearlyy, commutes with all elements ofy andJxJ = x™.
Lemma 7.4shows that indee@z(j N 27 A)J = n(j N 27 A) and Jz(2A4)J = 7(2.A).
Therefore,J, is admissible. Now suppose conversely thas an admissible fundamental
symmetry. Sincgy commutes withA4,, we can viewJ as an element ivd; ® End(A,, 1),
where A is the commutant ofd, in B(#H.). SinceJ is smooth, it is even an element
of Ag™° ® End(A,.1), where AoPP denotes the opposite algebra.4f which acts orH,
from the right. The space(21.4) is invariant under conjugation by. Therefore, the
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matricesJy;J must commute with all elements of;"® and therefore have entries in the
center of A", which is trivial. Hence, the vector space spanned byjthis invariant
under conjugation by. In the same way as in the proof Bfoposition 5.1one checks
that the map- : R"* — R™* defined byJy(v)J = (—1Yy(rv) is a spacelike reflection.
Hence, there exists a spacelike reflectiaf A, , such thafiy;J = J,:3J,. Denote bya
the operato;,J. Thena commutes with aly; and commutes witly. Hencea € Ag"° and
thereforea commutes withj,. We finally get froma®a = aat = 1 the equalitys® = 1.
Since bothj, andy give rise to positive scalar productsiust be positive in thg,-scalar
product and therefore, = 1. We conclude thay = 3, .

Theorem 7.7. Suppose that Ay has trivial center. The smooth pseudo-Riemannian spectral
triple (Ag, H, D) is nT-summable and for all a € Ay and each admissible fundamental
symmetry J we have

1

Tro(ad") = 5 (a) (49)

n—2k

Tro(aD?A;" %) = (—1) Tro(aA;™). (50)

n

Proof. Let E be the spinor bundle on the commutative toftfs* with the flat pseudo-
Riemannian metric of signature, ). Let 7. be the Krein space of square integrable sec-
tions of E. In the proof ofProposition 7.5ve constructed an isomorphism of Krein spaces
U :H — H. such thatUDU 1 = ikp, where] is the Dirac operator off”k. Moreover

the U3, U~ are admissible fundamental symmetries of the canonical spectral triple asso-
ciated with7™*. Therefore, byTheorem 6.8Tr,(A3") = c(n)~* and T@,(DZA\;"‘Z) =
(—1)"”‘72"Trw(Ag”) for all admissible fundamental symmetries. The proof s finished if we
can show that Ty(u(y)A5") = O and T(U(u(y)DzAg"*Z) = Owhenevey # 0. Let{v;} be

an orthonormal basis in,, ;. Then the elements, ; .= u(y) ® v; € H. forman orthonor-
mal basis i and they are eigenvectors mg" andD?. By Lemma 7.17 if9] we have
Tro@(»)A3;") =1im o0 Tr(E,u(y)A5"), whereE, is the orthogonal projector onto the
subspace generated by the fitstigenvectors oﬁgl and whenever the limit exists. But
since(gy,i, u(y')¢y,i)3 = 0 for all y’ # 0, we get Tr€u(y')A;") = 0 and consequently
Tro(u(y)A5") = 0. The same argument givesw'['u(y’)DzAg"_z) =0

8. Outlook

We showed that it is possible to extract the dimension, the signature and a notion of
integration from the spectral data of a pseudo-Riemannian manifold. It would certainly
be interesting if one could obtain the Einstein-Hilbert action in a similar way as in the
Riemannian case (s¢&2,11)). This can probably not be done straightforwardly, but may
require some averaging of expressions of the form V\D%A(g”) over the set of admissible
fundamental symmetries, where Wres denotes the Wodzicki residue.
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Another interesting question is, which further conditions on the admissible fundamental
symmetries are necessary inthe general situation to guarantee that the functighalgﬁ'y

and T|;D(-D2A3‘”‘2) on the algebra generated ldyand [D, .4] do not depend on the choice
of 3.

As far as the noncommutative tori are concerned we believe that an analogue of
Theorem 7.7holds in case the center ofy is not trivial. One should be able to proof
this in a similar way as we did it here for the case of a trivial center.
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